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Abstract—Generalized discriminant analysis (GDA) is a com-
monly used method for dimensionality reduction. In its general
form, it seeks a nonlinear projection that simultaneously maxi-
mizes the between-class dissimilarity and minimizes the within-
class dissimilarity to increase class separability. In real-world
applications where labeled data are scarce, GDA may not work
very well. However, unlabeled data are often available in large
quantities at very low cost. In this paper, we propose a novel
semi-supervised generalized discriminant analysis algorithm which
is abbreviated as SSGDA. We utilize unlabeled data to maximize
an optimality criterion of GDA and formulate the problem as
an optimization problem that is solved using the constrained
concave-convex procedure (CCCP). The optimization procedure
leads to estimation of the class labels for the unlabeled data. We
propose a novel confidence measure and a method for selecting
those unlabeled data points whose labels are estimated with high
confidence. The selected unlabeled data can then be used to
augment the original labeled data set for performing GDA. We
also propose a variant of SSGDA, called M-SSGDA, which adopts
the manifold assumption to utilize the unlabeled data. Extensive
experiments on many benchmark data sets demonstrate the
effectiveness of our proposed methods.

Index Terms—Generalized Discriminant Analysis, Semi-
Supervised Learning, Dimensionality Reduction, Constrained
Concave-Convex Procedure

I. INTRODUCTION

Linear discriminant analysis (LDA) [14], [26] is a com-
monly used method for dimensionality reduction. It seeks a
linear projection that simultaneously maximizes the between-
class dissimilarity and minimizes the within-class dissimi-
larity to increase class separability, typically for classifica-
tion applications. Despite its simplicity, the effectiveness and
computational efficiency of LDA make it a popular choice
for many applications. Nevertheless, LDA does have some
limitations. One of these arises in situations when the sample
size is much smaller than the dimensionality of the feature
space, leading to the so-called small sample size (SSS) prob-
lem [13] due to severe under-sampling of the underlying data
distribution. As a result, the within-class scatter matrix that
characterizes the within-class variability is not of full rank and
hence it is not invertible. A number of methods have been
proposed to overcome this problem, e.g., PseudoLDA [22],
RLDA [15] PCA+LDA [3], LDA/QR [36], NullLDA [13],
and DualLDA [30]. PseudoLDA overcomes the singularity
problem by substituting the inverse of the within-class scatter
matrix with its pseudo-inverse. RLDA adds a positive constant
value to each eigenvalue of the within-class scatter matrix to
overcome this problem. PCA+LDA first applies PCA [19] to
project the data into a lower-dimensional space so that the
within-class scatter matrix computed there is nonsingular, and
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then applies LDA in the lower-dimensional space. LDA/QR is
also a two-stage method which can be divided into two steps:
first project the data to the range space of the between-class
scatter matrix and then apply LDA in this space. NullLDA
first projects the data to the null space of the within-class
scatter matrix and then maximizes the between-class scatter
in this space. It is similar to the discriminative common
vectors (DCV) method [10]. DualLDA, which combines the
ideas from PCA+LDA and NullLDA, maximizes the between-
class scatter matrix in the range space and the null space of
the within-class scatter matrix separately and then integrates
the two parts together to get the final transformation. [16]
proposes a unified framework for RLDA, NullLDA and other
variants of LDA. There is also another approach to address
the SSS problem, with 2DLDA [35] being the representative
of this approach. The major difference between 2DLDA and
the algorithms above lies in their data representation. Specifi-
cally, 2DLDA operates on data represented as (2D) matrices,
instead of (1D) vectors, so that the dimensionality of the data
representation can be kept small as a way to alleviate the SSS
problem.

Another limitation of LDA is that it only gives a linear
projection of the data points. Fortunately, the kernel approach
can be applied easily via the so-called kernel trick to extend
LDA to its kernel version, called generalized discriminant
analysis (GDA) (or referred to as kernel discriminant analysis
in some papers), that can project the data points nonlin-
early, e.g., [2]. Similar to the linear case, there are many
variants of GDA corresponding to those of LDA, such as,
KPCA+LDA [32], KDA/QR [31], kernel-DCV [9], Kernel
Uncorrelated Discriminant Analysis [17], and 2D-GDA [21].
Unlike in LDA, using GDA requires one to select the kernel
and set the kernel parameters. Inspired by previous research
in multi-kernel learning [23], [20] and [34] address this
problem by learning the optimal kernel matrix as a convex
combination of some predefined kernel matrices using semi-
definite programming (SDP).

Besides addressing these two limitations of LDA, some
interesting recent works also address other issues, e.g., to
study the relationships between two variants of LDA [37], to
reformulate multi-class LDA as a multivariate linear regression
problem [33], [43].

In many real-world applications, it is impractical to expect
the availability of large quantities of labeled data because
labeling data is a costly process. On the other hand, unlabeled
data are available in large quantities at very low cost. Over the
past decade or so, one form of semi-supervised learning [11],
which attempts to utilize unlabeled data to aid classification
or regression tasks under situations with limited labeled data,
has emerged as a hot and promising research topic within
the machine learning community. A good survey of semi-
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supervised learning methods can be found in [45]. Some early
semi-supervised learning methods include Co-Training [6] and
transductive SVM (TSVM) [5], [18]. Recently, graph-based
semi-supervised learning methods [4], [44], [46] have aroused
the interest of many researchers. Unlike earlier methods, these
methods model the geometric relationships between all data
points in the form of a graph and then propagate the label
information from the labeled data points through the graph to
the unlabeled data points.

There are some works on semi-supervised extension of
LDA, such as [8], [40], [41] and [42], to utilize unlabeled
data to alleviate the SSS problem. [8] and [40] assume that
the low-dimensional representations of similar data points
are also similar and formulate this notion by means of a
regularization term in the objective function utilizing some
similarity measure. Inspired by TSVM, [41] utilizes unlabeled
data to maximize the optimality criterion of LDA. However,
these works mainly focus on the linear case, i.e., LDA, but
not GDA which is the more general case.

The objective of this paper is to alleviate the SSS problem
of GDA by exploiting unlabeled data. We propose a novel
semi-supervised generalized discriminant analysis algorithm,
abbreviated as SSGDA. Specifically, in SSGDA, we utilize
unlabeled data to maximize an optimality criterion of GDA and
formulate the problem as a constrained optimization problem
that can be solved using the constrained concave-convex pro-
cedure (CCCP) [38], [29]. This procedure essentially estimates
the class labels of the unlabeled data points. For those unla-
beled data points whose labels are estimated with sufficiently
high confidence based on some novel confidence measure
proposed by us, we select them to expand the original labeled
data set and then perform GDA again. Besides SSGDA, we
also propose a variant of SSGDA, called M-SSGDA, which
adopts the manifold assumption [4] to utilize the unlabeled
data. Note that M-SSGDA shares the spirit of both TSVM
and graph-based semi-supervised learning methods.

The remainder of this paper is organized as follows. We first
briefly review the traditional GDA algorithm in Section II.
We then present our SSGDA and M-SSGDA algorithms in
Section III. Section IV reports experimental results based on
some commonly used data sets. Performance comparison with
some representative methods is reported there to demonstrate
the effectiveness of our methods. Finally, some concluding
remarks are offered in the last section.

II. GENERALIZED DISCRIMINANT ANALYSIS

We are given a training set of 𝑛 data points, 𝒟 =
{x1, . . . ,x𝑛}, where x𝑖 ∈ ℝ𝑁 , 𝑖 = 1, . . . , 𝑛. Let 𝒟 be
partitioned into 𝐶 ≥ 2 disjoint classes Π𝑖, 𝑖 = 1, . . . , 𝐶,
where class Π𝑖 contains 𝑛𝑖 examples. The total scatter matrix
S𝑡 and the between-class scatter matrix S𝑏 are defined as

S𝑡 =
𝑛∑

𝑖=1

(𝜙(x𝑖)− m̄)(𝜙(x𝑖)− m̄)𝑇 (1)

S𝑏 =
𝐶∑

𝑘=1

𝑛𝑘(m̄𝑘 − m̄)(m̄𝑘 − m̄)𝑇 , (2)

where 𝜙(⋅) denotes the feature mapping corresponding to a
kernel function 𝑘(⋅, ⋅), m̄ = (

∑𝑛
𝑖=1 𝜙(x𝑖))/𝑛 is the sample

mean of the whole data set 𝒟 and m̄𝑘 = (
∑

x𝑖∈Π𝑘
𝜙(x𝑖))/𝑛𝑘

is the class mean of Π𝑘.
Let X = (𝜙(x1), . . . , 𝜙(x𝑛)), M = (m̄1, . . . , m̄𝐶), 𝝅 =

(𝑛1, . . . , 𝑛𝐶)
𝑇 , H𝑛 = I𝑛 − 1

𝑛1𝑛1
𝑇
𝑛 be the 𝑛 × 𝑛 centering

matrix where I𝑛 is an 𝑛×𝑛 identity matrix and 1𝑛 is an 𝑛×1
vector of all ones, D = diag(𝑛1, . . . , 𝑛𝐶) be a diagonal matrix
whose (𝑖, 𝑖)th element is 𝑛𝑖, E be an 𝑛 × 𝐶 class indicator
matrix whose (𝑖, 𝑗)th element is equal to 1 if x𝑖 is from the 𝑗th
class and 0 otherwise. It is easy to see that 1𝑇

𝑛E = 1𝑇
𝐶D = 𝝅𝑇

and M = XED−1 where A−1 denotes the inverse of matrix
A if A is nonsingular and the pseudo-inverse if A is singular.

From the definitions of S𝑡 and S𝑏 in Eqs. (1) and (2), we
can rewrite them in matrix form as

S𝑡 = XH𝑛H𝑛X
𝑇 = XH𝑛X

𝑇

and

S𝑏 = (M− 1

𝑛
X1𝑛1

𝑇
𝐶)D(M− 1

𝑛
X1𝑛1

𝑇
𝐶)

𝑇

= (XED−1 − 1

𝑛
X1𝑛1

𝑇
𝐶)D(XED−1 − 1

𝑛
X1𝑛1

𝑇
𝐶)

𝑇

= X(ED−1 − 1

𝑛
1𝑛1

𝑇
𝐶)D(D−1E𝑇 − 1

𝑛
1𝐶1

𝑇
𝑛 )X

𝑇

= X(E− 1

𝑛
1𝑛1

𝑇
𝐶D)D−1(E𝑇 − 1

𝑛
D1𝐶1

𝑇
𝑛 )X

𝑇

= X(E− 1

𝑛
1𝑛1

𝑇
𝑛E)D−1(E𝑇 − 1

𝑛
E𝑇1𝑛1

𝑇
𝑛 )X

𝑇

= XH𝑛ED−1E𝑇H𝑛X
𝑇 .

The second last equation holds because 1𝑇
𝑛E = 1𝑇

𝐶D.
GDA seeks to find a projection matrix W∗ that maximizes

the trace function of S𝑏 and S𝑡:

W∗ = argmax
W

trace((W𝑇S𝑡W)−1W𝑇S𝑏W), (3)

where trace(⋅) denotes the trace of a square matrix. Since we
do not know the explicit form of 𝜙(⋅) for most kernel func-
tions, we cannot solve Eq. (3) directly. From the representer
theorem in [25], we have W = XP. So problem (3) becomes

P∗ = argmax
P

trace((P𝑇KH𝑛KP)−1P𝑇KH𝑛ED−1E𝑇H𝑛KP).

(4)

According to [2], the optimal solution P∗ for the
problem (4) can be computed from the eigenvectors
of (KH𝑛K)−1KH𝑛ED−1E𝑇H𝑛K. Because the rank of
KH𝑛ED−1E𝑇H𝑛K is at most 𝐶 − 1, P∗ contains 𝐶 − 1
columns in most situations.

III. SEMI-SUPERVISED GENERALIZED DISCRIMINANT
ANALYSIS

In this section, we first present a theoretical result on the
optimal solution for GDA. We then show how to utilize
unlabeled data to solve the optimization problem, leading to
the SSGDA algorithm. Next, we incorporate the manifold
assumption into SSGDA to give M-SSGDA. Finally we give
some discussions about our methods.
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A. Optimal Solution for GDA

The following theorem on the optimal solution to the
problem (4) is relevant here.

Theorem 1: Given A ∈ ℝ𝑛×𝑛 and B ∈ ℝ𝑛×𝑛 are positive
semi-definite matrices and the rank of B is 𝑡, then for P ∈
ℝ𝑛×𝑡,

max
P

trace((P𝑇AP)−1P𝑇BP) = trace(A−1B).

The proof of this theorem can be found in [27].
From Theorem 1, we can easily get the following corollary

since KH𝑛K and KH𝑛ED−1E𝑇H𝑛K are positive semi-
definite matrices and the rank of KH𝑛ED−1E𝑇H𝑛K is
𝐶 − 1.

Corollary 1: For P ∈ ℝ𝑛×(𝐶−1),

max
P

trace((P𝑇KH𝑛KP)−1P𝑇KH𝑛ED−1E𝑇H𝑛KP)

= trace((KH𝑛K)−1KH𝑛ED−1E𝑇H𝑛K).

B. SSGDA: Exploiting Unlabeled Data to Maximize the Op-
timality Criterion

Suppose we have 𝑙 labeled data points 𝑥1, . . . , 𝑥𝑙 ∈ ℝ𝑁

with class labels from 𝐶 classes Π𝑖, 𝑖 = 1, . . . , 𝐶, and 𝑚
unlabeled data points 𝑥𝑙+1, . . . , 𝑥𝑙+𝑚 ∈ ℝ𝑁 with unknown
class labels. So we have totally 𝑛 = 𝑙+𝑚 examples available
for training and these 𝑛 data points consist of the training set
𝒟 where each class Π𝑖 is just a subset of 𝒟. Usually 𝑙 ≪ 𝑚.
When 𝑙 is very small compared with the input dimensionality,
GDA generally does not perform very well. To remedy this
problem, we want to incorporate unlabeled data to improve its
performance.

Inspired by TSVM [5], [18], which utilizes unlabeled
data to maximize the margin, we use unlabeled data here
to maximize the optimality criterion of LDA. According
to Corollary 1, we utilize unlabeled data to maximize
trace((KH𝑛K)−1KH𝑛ED−1E𝑇H𝑛K) via estimating the
class labels of the unlabeled data points.

We first rewrite the objective function as trace(ED−1E𝑇S)
where S = H𝑛K(KH𝑛K)−1KH𝑛. Since ED−1E𝑇 =∑𝐶

𝑖=1
e𝑖e

𝑇
𝑖

𝑛𝑖
where e𝑖 is the 𝑖th column of E, the objective

function can be formulated as

trace(ED−1E𝑇S) = trace(

𝐶∑
𝑖=1

e𝑖e
𝑇
𝑖

𝑛𝑖
S) =

𝐶∑
𝑖=1

e𝑇𝑖 Se𝑖
𝑛𝑖

.

Since those entries in E for the unlabeled data points are
unknown, we maximize the objective function with respect to
E. Recalled that 𝑛𝑖 is the number of data points in the 𝑖th class
and so 𝑛𝑖 = e𝑇𝑖 1𝑛. By defining some new variables for the
sake of notational simplicity, we formulate the optimization

problem as:

max
E,{𝑡𝑘}

𝐶∑
𝑘=1

e𝑇𝑘 Se𝑘
𝑡𝑘

𝑠.𝑡. 𝑡𝑘 = e𝑇𝑘 1𝑛, 𝑘 = 1, . . . , 𝐶

𝑒𝑖𝑗 =

{
1 if x𝑖 ∈ Π𝑗

0 otherwise 𝑖 = 1, . . . , 𝑙

𝑒𝑖𝑗 ∈ {0, 1}, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐶
𝐶∑

𝑗=1

𝑒𝑖𝑗 = 1, 𝑖 = 𝑙+1, . . . , 𝑛, (5)

where 𝑒𝑖𝑗 is the 𝑗th element of e𝑖 and also the (𝑖, 𝑗)th element
of E.

Unfortunately this is an integer programming problem
which is known to be NP-hard and often cannot be efficiently
solved. We seek to make this integer programming problem
tractable by relaxing the constraint 𝑒𝑖𝑗 ∈ {0, 1} in (5)
to 𝑒𝑖𝑗 ≥ 0, giving rise to a modified formulation of the
optimization problem:

max
E,{𝑡𝑘}

𝐶∑
𝑘=1

e𝑇𝑘 Se𝑘
𝑡𝑘

𝑠.𝑡. 𝑡𝑘 = e𝑇𝑘 1𝑛, 𝑘 = 1, . . . , 𝐶

𝑒𝑖𝑗 =

{
1 if x𝑖 ∈ Π𝑗

0 otherwise 𝑖 = 1, . . . , 𝑙

𝑒𝑖𝑗 ≥ 0, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐶
𝐶∑

𝑗=1

𝑒𝑖𝑗 = 1, 𝑖 = 𝑙+1, . . . , 𝑛. (6)

With such relaxation, the matrix entries of E for the
unlabeled data points may be interpreted as posterior class
probabilities. However, even though the constraints in the
optimization problem (6) are linear, the problem seeks to
maximize a convex function which, unfortunately, does not
correspond to a convex optimization problem [7]. If we re-
express the optimization problem in (6) as minimizing a
concave function, we can adopt the constrained concave-
convex procedure (CCCP) [38], [29] to solve this non-convex
optimization problem. For our case, the convex part of the
objective function degenerates to the special case of a constant
function which always returns zero.

CCCP is an iterative algorithm. In each iteration, the con-
cave part of the objective function for the optimization prob-
lem is replaced by its first-order Taylor series approximation
at the point which corresponds to the result obtained in the
previous iteration. Specifically, in the (𝑝+1)th iteration, we
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solve the following optimization problem:

max
E,{𝑡𝑘}

𝐶∑
𝑘=1

(
2(e

(𝑝)
𝑘 )𝑇S

𝑡
(𝑝)
𝑘

e𝑘 − (e
(𝑝)
𝑘 )𝑇Se

(𝑝)
𝑘

(𝑡
(𝑝)
𝑘 )2

𝑡𝑘

)
𝑠.𝑡. 𝑡𝑘 = e𝑇𝑘 1𝑛, 𝑘 = 1, . . . , 𝐶

𝑒𝑖𝑗 =

{
1 if x𝑖 ∈ Π𝑗

0 otherwise 𝑖 = 1, . . . , 𝑙

𝑒𝑖𝑗 ≥ 0, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐶
𝐶∑

𝑗=1

𝑒𝑖𝑗 = 1, 𝑖 = 𝑙+1, . . . , 𝑛, (7)

where 𝑒
(𝑝)
𝑘 and 𝑡

(𝑝)
𝑘 (𝑘 = 1, . . . , 𝐶) were obtained in the 𝑝th

iteration. The objective function in (7) is just the first-order
Taylor series approximation of that in (6) by ignoring some
constant terms.

Since the optimization problem (7) is a linear programming
(LP) problem, it can be solved efficiently and hence can
handle large-scale applications. Because the optimal solution
of an LP problem falls on the boundary of its feasible set
(or called constraint set), the matrix entries of the optimal
𝑒𝑖𝑗 computed in each iteration must be in {0, 1}, which
automatically satisfies the constraints in (5).

As the optimization problem is non-convex, the final solu-
tion that CCCP obtains generally depends on its initial value.
For the labeled data points, the corresponding entries in 𝑒𝑖𝑗
are held fixed based on their class labels. For the unlabeled
data points, we initialize the corresponding entries in 𝑒𝑖𝑗 with
equal prior probabilities for all classes:

𝑒
(0)
𝑖𝑗 =

{
1 if x𝑖 ∈ Π𝑗

0 otherwise 𝑖 = 1, . . . , 𝑙, 𝑗 = 1, . . . , 𝐶

𝑒
(0)
𝑖𝑗 =

1

𝐶
, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐶. (8)

The initial values for {𝑡(0)𝑘 } can be computed based on the
equality constraints in (7) which establish the relationships
between E and 𝑡𝑘.

C. M-SSGDA: Incorporating the Manifold Assumption

The manifold assumption [4] is adopted by many graph-
based semi-supervised learning methods. Under this assump-
tion, nearby points are more likely to have the same class
label for classification problems and similar low-dimensional
representations for dimensionality reduction problems. We
adopt this assumption to extend SSGDA to M-SSGDA.

Given the data set 𝒟 = {x1, . . . ,x𝑛}, we first construct
a 𝐾-nearest neighbor graph 𝐺 = (𝑉,𝐸), with the vertex set
𝑉 = {1, . . . , 𝑛} corresponding to the labeled and unlabeled
data points and the edge set 𝐸 ⊆ 𝑉 × 𝑉 representing the
relationships between data points. Each edge is assigned a
weight 𝑤𝑖𝑗 which reflects the similarity between points x𝑖
and x𝑗 :

𝑤𝑖𝑗 =

{
exp

(
− ∥x𝑖−x𝑗∥22

𝜎𝑖𝜎𝑗

)
if x𝑖 ∈ 𝑁𝐾(x𝑗) or x𝑗 ∈ 𝑁𝐾(x𝑖)

0 otherwise

where ∥ ⋅ ∥2 denotes the 2-norm of a vector, 𝑁𝐾(x𝑖) denotes
the neighborhood set of 𝐾-nearest neighbors of x𝑖, 𝜎𝑖 the
distance between x𝑖 and its 𝐾th nearest neighbor, and 𝜎𝑗

the distance between x𝑗 and its 𝐾th nearest neighbor. This
way of constructing the nearest neighbor graph is called local
scaling [39], which is different from that in SDA [8]. In
SDA, a constant value of 1 is set for all neighbors. This is
unsatisfactory especially when some neighbors are relatively
far away.

By incorporating the manifold assumption into our problem,
we expect nearby points to be more likely to have the same
class label and hence the two corresponding rows in E are
more likely to be the same. We thus modify the optimization
problem (6) by adding one more term to the objective function:

max
E,{𝑡𝑘}

𝐶∑
𝑘=1

e𝑇𝑘 Se𝑘
𝑡𝑘

− 𝜆

𝑛∑
𝑖=1

𝑛∑
𝑗=𝑖+1

𝑤𝑖𝑗∥e𝑖 − e𝑗∥1

𝑠.𝑡. 𝑡𝑘 = e𝑇𝑘 1𝑛, 𝑘 = 1, . . . , 𝐶

𝑒𝑖𝑗 =

{
1 if x𝑖 ∈ Π𝑗

0 otherwise 𝑖 = 1, . . . , 𝑙

𝑒𝑖𝑗 ≥ 0, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐶
𝐶∑

𝑗=1

𝑒𝑖𝑗 = 1, 𝑖 = 𝑙+1, . . . , 𝑛, (9)

where 𝜆 > 0 is a regularization parameter, e𝑖 denotes the 𝑖th
row of E, and ∥ ⋅ ∥1 is the 1-norm of a vector.

Since the objective function of the optimization problem (9)
is the difference of two convex functions, we can also adopt
CCCP to solve it. Similar to SSGDA, in each iteration of
CCCP, we also need to solve an LP problem:

max
E,{𝑡𝑘}

𝐶∑
𝑘=1

(
2(e

(𝑝)
𝑘 )𝑇S

𝑡
(𝑝)
𝑘

e𝑘 − (e
(𝑝)
𝑘 )𝑇Se

(𝑝)
𝑘

(𝑡
(𝑝)
𝑘 )2

𝑡𝑘

)

−𝜆
𝑛∑

𝑖=1

𝑛∑
𝑗=𝑖+1

𝑤𝑖𝑗∥e𝑖 − e𝑗∥1

𝑠.𝑡. 𝑡𝑘 = e𝑇𝑘 1𝑛, 𝑘 = 1, . . . , 𝐶

𝑒𝑖𝑗 =

{
1 if x𝑖 ∈ Π𝑗

0 otherwise 𝑖 = 1, . . . , 𝑙

𝑒𝑖𝑗 ≥ 0, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐶
𝐶∑

𝑗=1

𝑒𝑖𝑗 = 1, 𝑖 = 𝑙+1, . . . , 𝑛. (10)

One reason for choosing the 1-norm in the problem (9) is to
keep the problem (10) as an LP problem which has an efficient
and effective solution.

D. Augmenting the Labeled Data Set with Unlabeled Data

For both SSGDA and M-SSGDA, CCCP estimates the
class labels of all the unlabeled data points by solving the
corresponding optimization problems with respect to E. One
might then use all these unlabeled data points with estimated
class labels to expand the labeled data set and then apply
GDA again. However, it should be noted that not all the
class labels can be estimated accurately. Thus, including those
points with noisy class labels may impair the performance of
GDA. Here we propose an effective method for selecting only
those unlabeled data points whose labels are estimated with
sufficiently high confidence.
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Since all matrix entries in 𝑒𝑖𝑗 obtained by CCCP are either
0 or 1, they cannot serve as posterior class probabilities
for defining a measure to characterize the label estimation
confidence. Here we propose an alternative scheme. We first
use SSGDA or M-SSGDA to estimate the class labels for the
unlabeled data. Then we use all the unlabeled data points
with their estimated labels as well as the original labeled
data set to perform GDA. Then, in the embedding space,
we consider the neighborhood of each unlabeled data point
by taking into account unlabeled data points only. If an
unlabeled point has a sufficiently large proportion (determined
by some threshold 𝜃, usually chosen to be larger than 0.5) of
neighboring unlabeled points with the same estimated class
label as its own, we consider the estimated class label of this
unlabeled point to have high confidence and hence select it to
augment the labeled data set. Finally we performance GDA on
the augmented labeled data set to get the final transformation.

The SSGDA (or M-SSGDA) algorithm is summarized in
Table I.

E. Discussions

In order to gain some insight into our method, we investigate
the dual form of the optimization problem (7). We denote

r
(𝑝)
𝑘 =

(e
(𝑝)
𝑘 )𝑇Se

(𝑝)
𝑘

(𝑡
(𝑝)
𝑘 )2

1𝑛 − 2Se
(𝑝)
𝑘

𝑡
(𝑝)
𝑘

. We plug the first equality
constraint of the optimization problem (7) into its objective
function and get the following Lagrangian:

𝐿(E,𝜶,𝜷) =
𝐶∑

𝑘=1

(r
(𝑝)
𝑘 )𝑇e𝑘 −

𝐶∑
𝑘=1

𝑙∑
𝑖=1

𝛼𝑘𝑖(𝑒𝑖𝑘 − 𝛿
𝑐(𝑖)
𝑘 )

−
𝐶∑

𝑘=1

𝑛∑
𝑖=𝑙+1

𝛼𝑘𝑖𝑒𝑖𝑘 −
𝑛∑

𝑖=𝑙+1

𝛽𝑖(
𝐶∑

𝑘=1

𝑒𝑖𝑘 − 1),

where 𝑐(𝑖) is the class label of labeled data point 𝑖 and 𝛿
𝑐(𝑖)
𝑘 is

the delta function whose value is 1 if 𝑐(𝑖) = 𝑘 and 0 otherwise.
So the dual form of the optimization problem (7) is

max
𝛼,𝛽

𝐶∑
𝑘=1

𝑙∑
𝑖=1

𝛼𝑘𝑖𝛿
𝑐(𝑖)
𝑘 +

𝑛∑
𝑖=𝑙+1

𝛽𝑖

𝑠.𝑡. 𝛼𝑘𝑖 = 𝑟
(𝑝)
𝑘𝑖 , 𝑖 = 1, . . . , 𝑙, 𝑘 = 1, . . . , 𝐶

𝛼𝑘𝑖 + 𝛽𝑖 = 𝑟
(𝑝)
𝑘𝑖 , 𝑖 = 𝑙+1, . . . , 𝑛, 𝑘 = 1, . . . , 𝐶

𝛼𝑘𝑖 ≥ 0, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑘 = 1, . . . , 𝐶, (11)

where 𝑟
(𝑝)
𝑘𝑖 is the 𝑖th element of vector r(𝑝)𝑘 .

The Karush-Kuhn-Tucker (KKT) condition [7] for the opti-
mization problem (11) is

𝛼𝑘𝑖𝑒𝑖𝑘 = 0, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑘 = 1, . . . , 𝐶. (12)

From the first constraint of the optimization problem (11),
we can see that each 𝛼𝑘𝑖 has a constant value for 𝑖 =
1, . . . , 𝑙, 𝑘 = 1, . . . , 𝐶. So we can simplify the optimization
problem (11) by eliminating the first summation term in the

objective function and the first constraint as

max
𝛼,𝛽

𝑛∑
𝑖=𝑙+1

𝛽𝑖

𝑠.𝑡. 𝛼𝑘𝑖 + 𝛽𝑖 = 𝑟
(𝑝)
𝑘𝑖 , 𝑖 = 𝑙+1, . . . , 𝑛, 𝑘 = 1, . . . , 𝐶

𝛼𝑘𝑖 ≥ 0, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑘 = 1, . . . , 𝐶, (13)

which can be further simplified as

max
𝛽

𝑛∑
𝑖=𝑙+1

𝛽𝑖

𝑠.𝑡. 𝛽𝑖 ≤ 𝑟
(𝑝)
𝑘𝑖 , 𝑖 = 𝑙+1, . . . , 𝑛, 𝑘 = 1, . . . , 𝐶. (14)

So the optimal solution of 𝛽𝑖 can be obtained as 𝛽𝑖 =

min𝑘{𝑟(𝑝)𝑘𝑖 } for 𝑖 = 𝑙 + 1, . . . , 𝑛.
For each unlabeled data point, if we assume 𝑒𝑖𝑘★ > 0, then

from the KKT condition (12) we can get 𝛼𝑘★𝑖 = 0 and also
𝛽𝑖 = 𝑟

(𝑝)
𝑘★𝑖 according to the first constraint of the optimization

problem (13). So

𝑟
(𝑝)
𝑘★𝑖 = min

𝑘
{𝑟(𝑝)𝑘𝑖 }

and

𝑘★ = argmin
𝑘

{𝑟(𝑝)𝑘𝑖 }.

So 𝑟
(𝑝)
𝑘𝑖 can be seen as the negative confidence that the 𝑖th data

point belongs to the 𝑘th class and hence we can classify each
data point to the class corresponding to the minimal negative
confidence. If there is a unique minimum, then we can get
𝑒𝑖𝑘★ = 1 and 𝑒𝑖𝑘′ = 0 for 𝑘′ ∕= 𝑘★; otherwise, we can first
find the set of unlabeled data points for which there exists a
unique minimum and 𝑒𝑖𝑘 can be easily determined, and then
we can solve a smaller LP problem (7) by plugging in the
known elements 𝑒𝑖𝑗 . From our experiments, the latter situation
seldom occurs and this can speed up the optimization problem
(7), which even does not need to solve an LP problem.

For problem (10), when the number of unlabeled data
points is large, the computational cost to find the optimal
value is still very large. Here we use an alternating method
to solve problem (10). That is, at one time we optimize
problem (10) with respect to e𝑖 with {e𝑗(𝑗 ∕= 𝑖)} fixed. Let

r𝑘 =
(e

(𝑝)
𝑘 )𝑇Se

(𝑝)
𝑘

(𝑡
(𝑝)
𝑘 )2

1𝑛− 2Se
(𝑝)
𝑘

𝑡
(𝑝)
𝑘

. We first rewrite problem (10) as

min
E

𝐶∑
𝑘=1

r𝑇𝑘 e𝑘 + 𝜆
𝑛∑

𝑖=1

𝑛∑
𝑗=𝑖+1

𝑤𝑖𝑗∥e𝑖 − e𝑗∥1

𝑠.𝑡. 𝑒𝑖𝑗 =

{
1 if x𝑖 ∈ Π𝑗

0 otherwise 𝑖 = 1, . . . , 𝑙

𝑒𝑖𝑗 ≥ 0, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐶
𝐶∑

𝑗=1

𝑒𝑖𝑗 = 1, 𝑖 = 𝑙+1, . . . , 𝑛, (15)
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TABLE I
ALGORITHM FOR SSGDA OR M-SSGDA

Input: labeled data 𝑥𝑖 (𝑖 = 1, . . . , 𝑙), unlabeled data 𝑥𝑖 (𝑖 = 𝑙+1, . . . , 𝑛), 𝐾, 𝜃, 𝜀
Initialize E(0) using Eq. (8);
Initialize 𝑡

(0)
𝑘 based on E(0) for 𝑘 = 1, . . . , 𝐶;

Construct the 𝐾-nearest neighbor graph;
𝑝 = 0;
Repeat

𝑝 = 𝑝+ 1;
Solve the optimization problem (7) or (10);
Update E(𝑝) and 𝑡

(𝑝)
𝑘 using the result of the optimization problem for 𝑘 = 1, . . . , 𝐶;

Until ∥E(𝑝) −E(𝑝−1)∥𝐹 ≤ 𝜀
Select the unlabeled data points with high confidence based on the threshold 𝜃;
Add the selected unlabeled data points with their estimated labels into the labeled data set
and perform GDA on the augmented labeled data set to get the transformation P.
Output: the transformation P

which can be reformulated as

min
E

𝑛∑
𝑘=1

e𝑘(r𝑘)𝑇 + 𝜆
𝑛∑

𝑖=1

𝑛∑
𝑗=𝑖+1

𝑤𝑖𝑗∥e𝑖 − e𝑗∥1

𝑠.𝑡. 𝑒𝑖𝑗 =

{
1 if x𝑖 ∈ Π𝑗

0 otherwise 𝑖 = 1, . . . , 𝑙

𝑒𝑖𝑗 ≥ 0, 𝑖 = 𝑙+1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐶
𝐶∑

𝑗=1

𝑒𝑖𝑗 = 1, 𝑖 = 𝑙+1, . . . , 𝑛, (16)

where R = (r1, . . . , r𝐶) and r𝑘 is the 𝑘th row of R. So
when using an alternating method, the optimization problem
with respect to e𝑖 (𝑖 > 𝑙) can be formulated as

min
e𝑖

e𝑖(r𝑖)𝑇 + 𝜆
∑

𝑗 ∕=𝑖&𝑤𝑖𝑗>0

𝑤𝑖𝑗∥e𝑖 − e𝑗∥1

𝑠.𝑡. 𝑒𝑖𝑗 ≥ 0, 𝑗 = 1, . . . , 𝐶
𝐶∑

𝑗=1

𝑒𝑖𝑗 = 1. (17)

Compared with the original problem (10), there is no need
to specify the constraints for labeled data in problem (17)
which reduces the complexity of the optimization problem.
The problem (17) has 𝐶 variables and 𝐶 + 1 constraints and
so it can be solved efficiently. Since problem (10) is a convex
problem and each step in the alternating method decreases the
objective function value, the learning procedure can converge
to the global optimum.

The computational cost of SSGDA and M-SSGDA includes
performing GDA twice and solving the optimization problem
using CCCP. The complexity of GDA is 𝑂(𝑛3). The LP prob-
lem inside each iteration of CCCP can be solved efficiently.
From our experimental results, CCCP converges very fast in
less than 10 iterations. So SSGDA and M-SSGDA are efficient
under most situations.

IV. EXPERIMENTS

In this section, we first study SSGDA and M-SSGDA
empirically.

We compare their performance with several other dimen-
sionality reduction methods. After dimensionality reduction
has been performed, we apply a simple nearest-neighbor

classifier to perform classification in the embedding space. We
also compare SSGDA and M-SSGDA with two state-of-the-
art inductive semi-supervised learning methods, LapSVM and
LapRLS [4]. We use MATLAB to implement all the algorithms
and the CVX toolbox1 for solving the optimization problems.
We use the source code offered by Belkin et al. for LapSVM
and LapRLS2.

We evaluate these algorithms on 13 benchmark data sets,
including 8 UCI data sets [1], a brain-computer interface data
set BCI3 and four image data sets: COIL3, PIE [28], ORL [3]
and AR [24]. See Table II for more details.

For each data set, we randomly select 𝑞 data points from
each class as labeled data and 𝑟 points from each class
as unlabeled data. The remaining data form the test set.
Table II shows the data partitioning for each data set. For each
partitioning, we perform 20 random splits and report the mean
and standard derivation over the 20 trials. For M-SSGDA, we
choose the number of nearest neighbors 𝐾 for constructing
the 𝐾-nearest neighbor graph to be the same as that for SDA,
LapSVM, and LapRLS.

We use 5-fold cross validation to determine the values
of the hyperparameters. The candidate set for the 𝜆 used
in M-SSGDA is {10−3, 10−2, 10−1, 1, 10, 102, 103} and the
width parameter of the RBF kernel is chosen from 𝜎0 ×
{10−3, 10−2, 10−1, 1, 10, 102, 103} where 𝜎0 is the average
distance between two points in the data set.

A. Experimental Results for Linear Kernel

In this section, we compare our methods with some linear
methods by using the linear kernel. We first compare our meth-
ods with dimensionality reduction methods including PCA,
LDA [3], SDA and LapLDA [12]. Note that PCA is unsuper-
vised, LDA is supervised, and SDA and LapLDA are semi-
supervised in nature. Moreover, the nearest-neighbor (NN)
classifier is used as a baseline. The experimental results are
listed in Table III. There are two rows for each data set:
the upper one being the classification error on the unlabeled
training data and the lower one being that on the test data. For
each data set, the lowest classification error is shown in bold.

1http://www.stanford.edu/∼boyd/cvx/
2http://manifold.cs.uchicago.edu/
3http://www.kyb.tuebingen.mpg.de/ssl-book/
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TABLE II
SUMMARY OF DATA SETS USED AND DATA PARTITIONING FOR EACH DATA SET

Data set #Dim (𝑁 ) #Inst (𝑛) #Class (𝐶) #Labeled (𝑞) #Unlabeled (𝑟)
diabetes 8 768 2 5 100
heart-statlog 13 270 2 5 100
ionosphere 34 351 2 5 50
hayes-roth 4 160 3 3 20
iris 4 150 3 3 20
mfeat-pixel 240 2000 10 5 50
pendigits 16 10992 10 5 95
vehicle 18 864 4 5 100
BCI 117 400 2 5 50
COIL 241 1500 6 5 100
PIE 1024 1470 30 2 20
ORL 644 200 20 2 6
AR 792 520 20 5 15

From the results, we can see that the performance of SSGDA
or M-SSGDA is better than other methods in most situations.
For DIABETES, HEART-STATLOG, PENDIGITS, VEHICLE and
PIE, the improvement is very significant. Moreover, for the
data sets such as DIABETES and HEART-STATLOG which may
not contain any manifold structure, the performance of SSGDA
is better than M-SSGDA. For MFEAT-PIXEL, PIE and others
which may contain manifold structure, the performance of M-
SSGDA is better than SSGDA. Thus for data sets such as
images which may have manifold structure, we recommend
using M-SSGDA. Otherwise SSGDA is preferred. Compared
with SDA, SSGDA and M-SSGDA are more stable. Specifi-
cally, the performance of SSGDA or M-SSGDA is comparable
to or better than that of LDA in most situations. For SDA,
however, performance degradation can sometimes be very
severe, especially for MFEAT-PIXEL and PIE.

We also investigate the selection method described in Sec-
tion III-D. We record the mean error rate of label estimation
for the unlabeled data over 20 trials before and after applying
the selection method. The results in Table IV show that
the estimation error rate after applying the selection method
is almost always smaller, sometimes very significantly. This
confirms that our selection method for unlabeled data is very
effective.

TABLE IV
ERROR RATE OF LABEL ESTIMATION FOR THE UNLABELED DATA BEFORE

AND AFTER APPLYING THE SELECTION METHOD

SSGDA (%) M-SSGDA (%)
Data set Before After Before After
diabetes 35.97 33.33 45.90 48.80
heart-statlog 27.73 27.38 44.75 33.30
ionosphere 30.95 12.49 25.90 17.93
hayes-roth 53.25 47.27 58.00 57.36
iris 24.58 6.61 8.58 4.94
mfeat-pixel 67.51 0.00 5.79 1.09
pendigits 24.69 13.92 11.08 5.98
vehicle 43.70 30.12 55.20 47.74
BCI 49.25 34.58 51.00 50.85
COIL 66.43 3.93 57.36 39.97
PIE 69.52 15.00 47.36 29.59
ORL 95.58 0.50 26.67 13.00
AR 94.43 35.00 68.63 24.17

Next we compare our methods with some representative
semi-supervised learning methods. The experimental settings
are the same as those in the first experiment. There are

many popular semi-supervised learning methods, such as Co-
Training [6], methods in [44], [46], LapSVM and LapRLS [4].
Co-Training requires two independent and sufficient views for
the data, but data used in our experiment cannot satisfy this
requirement. The methods in [44], [46] can only work under
the transductive setting, in which the test data, in addition to
the training data, must be available during model training and
the learned model cannot be applied to unseen test data easily.
So these methods cannot satisfy our experimental settings
and hence are not included in our experiments. LapSVM and
LapRLS, which also adopt the manifold assumption, have
efficient solutions and can work under the inductive setting.
So we have included them in our experiment for performance
comparison. The standard LapSVM and LapRLS algorithms
are for two-class problems. For multi-class problems, we adopt
the one vs. rest strategy as in [4] for LapSVM and LapRLS.
Since the methods used here are all linear methods, we use
a linear kernel for LapSVM and LapRLS. The experimental
results are shown in Table V. From the experimental results,
we can see that the performance of SSGDA and M-SSGDA
is comparable to or even better than that of LapSVM and
LapRLS. Moreover, one advantage of SSGDA and M-SSGDA
is that their formulation and optimization procedure are the
same for two-class and multi-class problems. However, this is
not the case for LapSVM and LapRLS which require training
the models multiple times for multi-class problems.

In Table VI, we record the number of iterations in the CCCP
optimization method for SSGDA and M-SSGDA as well as
their computation time. From the results, it is clear that both
methods exhibit fast convergence requiring no more than 20
iterations and relatively short computation time.

B. Experimental Results for RBF Kernel

We next compare our methods with some nonlinear methods
using the RBF kernel, including KPCA, GDA, LapRLS and
LapSVM. The experimental results are shown in Table VII.
For each data set, the lowest classification error is shown in
bold. From the results, we can see that the performance of
SSGDA and M-SSGDA using the RBF kernel is comparable
to or even better than that of KPCA, GDA, LapSVM and
LapRLS. This demonstrates the effectiveness of our methods.

Moreover, from Table VIII, we can see that our methods
are efficient in terms of both the number of iterations and the
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TABLE III
AVERAGE CLASSIFICATION ERRORS FOR EACH METHOD ON EACH DATA SET. EACH NUMBER INSIDE BRACKETS SHOWS THE CORRESPONDING STANDARD
DERIVATION. THE UPPER ROW FOR EACH DATA SET IS THE CLASSIFICATION ERROR ON THE UNLABELED TRAINING DATA AND THE LOWER ROW IS THAT

ON THE TEST DATA.

Data set NN PCA LDA SDA LapLDA SSGDA M-SSGDA
diabetes 0.4630(0.0436) 0.4335(0.0775) 0.4438(0.0878) 0.4022(0.0638) 0.4537(0.0514) 0.3898(0.0674) 0.4360(0.0605)

0.4657(0.0675) 0.4253(0.1154) 0.4311(0.0997) 0.3763(0.0864) 0.4466(0.0838) 0.3276(0.0643) 0.4125(0.1074)
heart-statlog 0.4160(0.0803) 0.4288(0.0689) 0.3978(0.0582) 0.3680(0.0564) 0.3695(0.0568) 0.3293(0.0976) 0.3818(0.0662)

0.4283(0.1181) 0.3975(0.0669) 0.3767(0.1055) 0.3783(0.1076) 0.3958(0.0856) 0.3133(0.1174) 0.3258(0.1493)
ionosphere 0.3250(0.0982) 0.2895(0.1032) 0.2850(0.0876) 0.2695(0.1056) 0.2825(0.0552) 0.2860(0.1015) 0.2830(0.1029)

0.3261(0.0566) 0.2189(0.0632) 0.2365(0.0972) 0.2241(0.0863) 0.2203(0.0627) 0.2351(0.1032) 0.2399(0.1278)
hayes-roth 0.5100(0.0969) 0.5175(0.0571) 0.4942(0.0531) 0.5058(0.0661) 0.5183(0.0630) 0.4867(0.0569) 0.4758(0.0586)

0.5211(0.0598) 0.5115(0.0605) 0.5165(0.0690) 0.5077(0.0752) 0.5984(0.0642) 0.5121(0.0770) 0.5060(0.0627)
iris 0.0917(0.0393) 0.0917(0.0417) 0.0933(0.0613) 0.0825(0.0506) 0.0792(0.0609) 0.0708(0.0445) 0.0667(0.0493)

0.1052(0.0409) 0.0907(0.0333) 0.0833(0.0586) 0.0809(0.0395) 0.0728(0.0485) 0.0611(0.0370) 0.0611(0.0454)
mfeat-pixel 0.1770(0.0168) 0.1450(0.0232) 0.1501(0.0290) 0.2783(0.0435) 0.1571(0.0268) 0.1501(0.0289) 0.1367(0.0210)

0.1692(0.0182) 0.1429(0.0228) 0.1486(0.0264) 0.3428(0.0298) 0.1673(0.0181) 0.1485(0.0264) 0.1329(0.0213)
pendigits 0.1947(0.0151) 0.1724(0.0305) 0.2238(0.0364) 0.2547(0.0447) 0.1758(0.0185) 0.1785(0.0266) 0.1617(0.0242)

0.1971(0.0178) 0.1761(0.0276) 0.2192(0.0332) 0.2544(0.0382) 0.1725(0.0185) 0.1779(0.0190) 0.1650(0.0225)
vehicle 0.5485(0.0521) 0.5739(0.0375) 0.5741(0.0365) 0.5400(0.0402) 0.4816(0.0538) 0.4396(0.0734) 0.4838(0.0901)

0.5580(0.0570) 0.5808(0.0453) 0.5879(0.0429) 0.5462(0.0312) 0.4918(0.0575) 0.4329(0.0672) 0.4739(0.0791)
BCI 0.5260(0.0378) 0.4835(0.0460) 0.4830(0.0557) 0.4960(0.0476) 0.4990(0.0468) 0.4750(0.0432) 0.4975(0.0484)

0.5169(0.0266) 0.5000(0.0324) 0.4803(0.0249) 0.4812(0.0326) 0.4948(0.0488) 0.4732(0.0331) 0.4741(0.0346)
COIL 0.5202(0.0535) 0.4443(0.0418) 0.5247(0.0371) 0.5419(0.0607) 0.4561(0.0525) 0.5236(0.0374) 0.5193(0.0401)

0.5399(0.0523) 0.4391(0.0364) 0.5194(0.0421) 0.5461(0.0482) 0.4553(0.0508) 0.5178(0.0434) 0.5096(0.0398)
PIE 0.5608(0.0223) 0.6156(0.0275) 0.5055(0.1624) 0.7629(0.0377) 0.4010(0.0394) 0.4674(0.1757) 0.2381(0.0552)

0.5654(0.0310) 0.6207(0.0251) 0.5126(0.1512) 0.8277(0.0208) 0.3853(0.0382) 0.4777(0.1696) 0.2424(0.0592)
ORL 0.1117(0.0341) 0.1217(0.0292) 0.1050(0.0300) 0.1142(0.0556) 0.1108(0.0427) 0.0967(0.0391) 0.1025(0.0515)

0.1300(0.0483) 0.1400(0.0530) 0.1375(0.0489) 0.0950(0.0524) 0.0975(0.0416) 0.1325(0.0613) 0.1300(0.0468)
AR 0.6563(0.0403) 0.6610(0.0369) 0.1570(0.0385) 0.6603(0.0334) 0.6447(0.0365) 0.1480(0.0280) 0.1547(0.0273)

0.6392(0.0611) 0.6525(0.0547) 0.1458(0.0240) 0.5250(0.0450) 0.5267(0.0360) 0.1325(0.0234) 0.1342(0.0217)

TABLE V
AVERAGE CLASSIFICATION ERRORS FOR EACH METHOD ON EACH DATA SET. EACH NUMBER INSIDE BRACKETS SHOWS THE CORRESPONDING STANDARD
DERIVATION. THE UPPER ROW FOR EACH DATA SET IS THE CLASSIFICATION ERROR ON THE UNLABELED TRAINING DATA AND THE LOWER ROW IS THAT

ON THE TEST DATA.

Data set LapSVM LapRLS SSGDA M-SSGDA
diabetes 0.4763(0.0586) 0.4523(0.0650) 0.3620(0.0680) 0.4015(0.0893)

0.5643(0.0684) 0.5009(0.0775) 0.3488(0.0514) 0.4234(0.1107)
heart-statlog 0.3478(0.1059) 0.3348(0.1070) 0.3108(0.0901) 0.3758(0.0914)

0.3517(0.1458) 0.3375(0.1366) 0.3091(0.0989) 0.3442(0.1226)
ionosphere 0.3525(0.0539) 0.3260(0.0527) 0.3340(0.0902) 0.3185(0.0719)

0.2245(0.0697) 0.2266(0.0732) 0.2705(0.0969) 0.2905(0.0933)
hayes-roth 0.6633(0.0149) 0.6608(0.0261) 0.4833(0.0824) 0.5225(0.0466)

0.5550(0.0737) 0.5500(0.0516) 0.4901(0.0705) 0.5104(0.0711)
iris 0.3175(0.1390) 0.2708(0.1474) 0.0650(0.0516) 0.0525(0.0437)

0.3049(0.1426) 0.2741(0.1473) 0.0772(0.0508) 0.0593(0.0379)
mfeat-pixel 0.1488(0.0236) 0.1359(0.0257) 0.1578(0.0268) 0.1420(0.0249)

0.2252(0.0187) 0.2075(0.0181) 0.1555(0.0263) 0.1427(0.0183)
pendigits 0.2571(0.0379) 0.2368(0.0312) 0.1856(0.0226) 0.1697(0.0245)

0.2539(0.0334) 0.2377(0.0283) 0.1866(0.0244) 0.1735(0.0217)
vehicle 0.4713(0.0449) 0.4921(0.0460) 0.4219(0.0623) 0.4645(0.0770)

0.4758(0.0477) 0.5007(0.0452) 0.4181(0.0600) 0.4641(0.0777)
BCI 0.4805(0.0551) 0.4695(0.0612) 0.4515(0.0543) 0.4665(0.0479)

0.4631(0.0456) 0.4562(0.0390) 0.4752(0.0362) 0.4864(0.0372)
COIL 0.5414(0.0496) 0.5855(0.0617) 0.5028(0.0576) 0.5030(0.0488)

0.5421(0.0497) 0.5864(0.0598) 0.5057(0.0533) 0.5062(0.0423)
PIE 0.2561(0.0311) 0.3405(0.0227) 0.4096(0.1600) 0.2497(0.0313)

0.2671(0.0235) 0.3523(0.0151) 0.4160(0.1575) 0.2556(0.0235)
ORL 0.2442(0.0466) 0.1158(0.0494) 0.0967(0.0391) 0.1025(0.0515)

0.2600(0.0518) 0.1025(0.0416) 0.1325(0.0613) 0.1300(0.0468)
AR 0.4647(0.0270) 0.4163(0.0252) 0.1480(0.0280) 0.1547(0.0273)

0.3317(0.0473) 0.2850(0.0374) 0.1325(0.0234) 0.1342(0.0217)

total computation time.

V. CONCLUSION

In this paper, we have presented a new approach for semi-
supervised generalized discriminant analysis. By making use
of both labeled and unlabeled data in learning a transforma-
tion for dimensionality reduction, this approach overcomes a

serious limitation of GDA under situations where labeled data
are limited. In our future work, we will apply the ideas here
to some other dimensionality reduction methods.
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TABLE VI
NUMBER OF ITERATIONS FOR THE CONVERGENCE OF THE CCCP OPTIMIZATION METHOD AND THE TOTAL COMPUTATION TIME (IN SECONDS) OF OUR

TWO METHODS, SSGDA AND M-SSGDA, USING THE LINEAR KERNEL.

SSGDA M-SSGDA
Data set Number of Iterations Computation Time (s) Number of Iterations Computation Time (s)
diabetes 10 1.69 9 8.54
heart-statlog 12 2.54 10 8.10
ionosphere 14 1.41 15 5.26
hayes-roth 13 0.87 16 5.65
iris 10 0.62 14 4.71
mfeat-pixel 8 3.58 10 76.08
pendigits 11 24.69 15 13.92
vehicle 13 4.11 15 56.02
BCI 14 0.33 16 7.19
COIL 15 3.87 14 91.84
PIE 16 12.52 11 165.61
ORL 16 3.71 12 111.82
AR 16 2.11 13 263.45

TABLE VII
AVERAGE CLASSIFICATION ERRORS FOR EACH METHOD ON EACH DATA SET. EACH NUMBER INSIDE BRACKETS SHOWS THE CORRESPONDING STANDARD
DERIVATION. THE UPPER ROW FOR EACH DATA SET IS THE CLASSIFICATION ERROR ON THE UNLABELED TRAINING DATA AND THE LOWER ROW IS THAT

ON THE TEST DATA.

Data set NN KPCA GDA LapSVM LapRLS SSGDA M-SSGDA
diabetes 0.4625(0.0334) 0.4195(0.0589) 0.3915(0.0645) 0.4235(0.0477) 0.3990(0.0653) 0.4510(0.0662) 0.4100(0.0489)

0.4809(0.0637) 0.3828(0.0696) 0.3857(0.0647) 0.3685(0.0696) 0.3685(0.0543) 0.3932(0.0751) 0.3579(0.0589)
heart-statlog 0.5080(0.0640) 0.4320(0.0547) 0.4255(0.0839) 0.4185(0.0645) 0.4225(0.0688) 0.4685(0.0730) 0.4285(0.0555)

0.5750(0.0873) 0.4717(0.0828) 0.4583(0.0988) 0.5000(0.1227) 0.4933(0.0988) 0.5217(0.1267) 0.4317(0.0869)
ionosphere 0.3650(0.0854) 0.3540(0.0878) 0.2530(0.0831) 0.3390(0.1440) 0.3070(0.1192) 0.3270(0.0460) 0.3010(0.0794)

0.2929(0.0305) 0.2660(0.0495) 0.2091(0.0559) 0.2357(0.0582) 0.2212(0.0523) 0.2519(0.0585) 0.1789(0.0687)
hayes-roth 0.5683(0.0703) 0.5417(0.0672) 0.4879(0.0549) 0.5283(0.1034) 0.5367(0.0749) 0.4750(0.0589) 0.5533(0.1206)

0.5543(0.0477) 0.4769(0.0788) 0.4389(0.0961) 0.4692(0.0798) 0.4890(0.0824) 0.4286(0.0930) 0.4846(0.0790)
iris 0.1550(0.0681) 0.1033(0.0361) 0.1000(0.0425) 0.1567(0.0462) 0.1600(0.0459) 0.0967(0.0431) 0.1500(0.0791)

0.1464(0.0768) 0.0889(0.0534) 0.0914(0.0542) 0.1228(0.0376) 0.1230(0.0477) 0.0840(0.0489) 0.1556(0.0478)
mfeat-pixel 0.1690(0.0221) 0.1560(0.0171) 0.1288(0.0140) 0.0920(0.0146) 0.0948(0.0173) 0.0846(0.0159) 0.0812(0.0177)

0.1646(0.0199) 0.1535(0.0101) 0.1194(0.0102) 0.0978(0.0089) 0.1011(0.0132) 0.0774(0.0132) 0.0630(0.0161)
pendigits 0.1905(0.0191) 0.1664(0.0387) 0.1664(0.0367) 0.1648(0.0324) 0.1644(0.0325) 0.1549(0.0355) 0.1592(0.0459)

0.1890(0.0199) 0.1657(0.0307) 0.1641(0.0303) 0.1652(0.0212) 0.1669(0.0199) 0.1538(0.0294) 0.1597(0.0400)
vehicle 0.5695(0.0292) 0.5875(0.0418) 0.5895(0.0341) 0.5895(0.0341) 0.5965(0.0280) 0.5275(0.0316) 0.5405(0.0472)

0.5800(0.0296) 0.5690(0.0536) 0.5728(0.0435) 0.5793(0.0327) 0.5925(0.0340) 0.5512(0.0376) 0.5460(0.0368)
BCI 0.5280(0.0326) 0.5320(0.0789) 0.4760(0.0594) 0.4900(0.0354) 0.4900(0.0510) 0.4660(0.0680) 0.4710(0.0667)

0.5179(0.0356) 0.4772(0.0542) 0.4762(0.0282) 0.4924(0.0344) 0.4745(0.0352) 0.4621(0.0360) 0.4717(0.0434)
COIL 0.4877(0.0461) 0.4803(0.0337) 0.4813(0.0345) 0.4573(0.0277) 0.4653(0.0358) 0.4407(0.0423) 0.4533(0.0147)

0.4889(0.0416) 0.4846(0.0478) 0.4809(0.0356) 0.4480(0.0422) 0.4579(0.0541) 0.4518(0.0264) 0.4380(0.0245)
PIE 0.5757(0.0229) 0.6017(0.0327) 0.4743(0.0239) 0.3460(0.0253) 0.3793(0.0257) 0.3730(0.0352) 0.3223(0.0550)

0.5719(0.0218) 0.5980(0.0223) 0.4822(0.0278) 0.3380(0.0250) 0.3716(0.0248) 0.3711(0.0281) 0.3002(0.0470)
ORL 0.1117(0.0341) 0.1333(0.0471) 0.1092(0.0401) 0.0783(0.0205) 0.0825(0.0287) 0.0703(0.0132) 0.0725(0.0279)

0.1300(0.0483) 0.1425(0.0514) 0.1200(0.0497) 0.0975(0.0399) 0.0675(0.0501) 0.0615(0.0208) 0.0691(0.0278)
AR 0.6563(0.0403) 0.6710(0.0377) 0.4593(0.0493) 0.5023(0.0241) 0.5853(0.0329) 0.4153(0.0292) 0.4143(0.0267)

0.6392(0.0611) 0.6525(0.0539) 0.4483(0.0408) 0.4533(0.0653) 0.5275(0.0630) 0.4350(0.0527) 0.4692(0.0333)

TABLE VIII
NUMBER OF ITERATIONS FOR THE CONVERGENCE OF THE CCCP OPTIMIZATION METHOD AND THE TOTAL COMPUTATION TIME (IN SECONDS) OF OUR

TWO METHODS, SSGDA AND M-SSGDA, UNDER THE RBF KERNEL.

SSGDA M-SSGDA
Data set Number of Iterations Computation Time (s) Number of Iterations Computation Time (s)
diabetes 12 0.89 11 19.29
heart-statlog 14 0.69 10 23.82
ionosphere 15 0.22 9 21.33
hayes-roth 16 0.07 14 44.94
iris 9 0.06 12 41.33
mfeat-pixel 10 12.36 14 96.95
pendigits 8 11.08 15 125.38
vehicle 9 3.87 15 155.39
BCI 13 0.25 12 70.21
COIL 14 12.26 13 157.10
PIE 15 22.35 14 199.01
ORL 14 0.82 15 162.28
AR 16 4.49 16 388.55
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Special Administrative Region, China.
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