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Abstract. Linear discriminant analysis(LDA) is a commonly used method for
dimensionality reduction. Despite its successes, it has limitations under some sit-
uations, including the small sample size problem, the homoscedasticity assump-
tion that different classes have the same Gaussian distribution, and its inabil-
ity to produce probabilistic output and handle missing data. In this paper, we
propose a semi-supervised and heteroscedastic extension of probabilistic LDA,
called S2HPLDA, which aims at overcoming all these limitations under a com-
mon principled framework. Moreover, we apply automatic relevance determina-
tion to determine the required dimensionality of the low-dimensional space for
dimensionality reduction. We empirically compare our method with several re-
lated probabilistic subspace methods on some face and object databases. Very
promising results are obtained from the experiments showing the effectiveness of
our proposed method.

1 Introduction

The need for dimensionality reduction is pervasive in many applications of pattern
recognition and machine learning due to the high dimensionality of the data involved.
Dimensionality reduction techniques seek to project high-dimensional data either lin-
early or nonlinearly into a lower-dimensional space according to some criterion so as
to facilitate subsequent processing, such as classification. Classical linear dimensional-
ity reduction methods include principal component analysis (PCA) [1] andlinear dis-
criminant analysis(LDA) [2], with the former being an unsupervised technique while
the latter a supervised one that exploits the label information in the labeled data. For
classification applications, LDA generally outperforms PCA because label information
is usually useful for finding a projection to improve class separability in the lower-
dimensional space.

Although LDA is widely used in many applications, the method in its original form
does have limitations under some situations. One of them is a well-known limitation
often referred to as the small sample size (SSS) problem [3], which arises in applica-
tions when the sample size is much smaller than the feature dimensionality and hence
the within-class scatter matrix is singular. A number of methods have been proposed to
address this problem, e.g., PseudoLDA [4], PCA+LDA [5], LDA/QR [6], NullLDA [3],
DCV [7], DualLDA [8] and 2DLDA [9]. The main idea underlying these methods is to
seek a space or subspace in which the within-class scatter matrix is nonsingular and then
perform LDA or its variants there without suffering from the singularity problem. More



recently, another approach has been pursued by some researchers [10–12] to alleviate
the SSS problem viasemi-supervised learning[13], by utilizing unlabeled data in per-
forming dimensionality reduction in addition to labeled data. Another limitation of LDA
arises from the fact that the solution it gives is optimal only when the classes are ho-
moscedastic with the same Gaussian distribution. However, this requirement is too rigid
in practice and hence it does not hold in many real-world applications. To overcome this
limitation, mixture discriminant analysis [14] and a maximum likelihood approach [15]
have been proposed. Recently, Loog and Duin [16] proposed a heteroscedastic exten-
sion to LDA based on the Chernoff criterion, with a kernel extension proposed later
in [17]. The third limitation of LDA comes from its non-probabilistic nature. As such,
it cannot produce probabilistic output and handle missing data in a principled manner.
While producing probabilistic output can help the subsequent decision-making process
in incorporating uncertainty under a probabilistic framework, the missing data prob-
lem is so commonly encountered in applications that being able to deal with it is very
essential to the success of pattern recognition tools for practical applications. Some
probabilistic LDA models have been proposed, e.g., [18–20]. A by-product of most
probabilistic LDA models except the one in [18] is that it imposes no restriction on the
maximum number of reduced dimensions, but the original LDA model can only project
data into at mostC − 1 dimensions whereC is the number of classes. Nevertheless,
previous research in probabilistic LDA [19, 20] did not pay much attention to the issue
of how to determine the reduced dimensionality needed.

While various attempts were made previously to address the above limitations in-
dividually, mostly one or at most two at a time, we are more aggressive here in trying
to address all of them within a common principled framework. Specifically, in this pa-
per, we will go through a two-step process in our presentation. First, we propose a
heteroscedastic probabilistic LDA(HPLDA) model which relaxes the homoscedastic-
ity assumption in LDA. However, in HPLDA, the parameters for each class can only be
estimated using labeled data from that class. This may lead to poor performance when
labeled data are scarce. Motivated by previous attempts that applied semi-supervised
learning to alleviate the SSS problem, we then extend HPLDA tosemi-supervised het-
eroscedastic probabilistic LDA(S2HPLDA) by making use of (usually large quantities
of) unlabeled data in the learning process. In S2HPLDA, each class can have a dif-
ferent class covariance matrix and unlabeled data are modeled by a Gaussian mixture
model in which each mixture component corresponds to one class. We also use auto-
matic relevance determination (ARD) [21] to determine the required dimensionality of
the lower-dimensional space which can be different for different classes and hence is
fairly flexible.

The remainder of this paper is organized as follows. In Section 2, we first briefly
review some previous work on probabilistic LDA. We then present HPLDA in Section 3
and S2HPLDA in Section 4. Section 5 reports some experimental results based on face
and object databases to demonstrate the effectiveness of our proposed method. Finally,
Section 6 concludes the paper.



2 Related Work

To the best of our knowledge, three variants of probabilistic LDA [18–20] were pro-
posed before.

In [18], each class is modeled by a Gaussian distribution with a common covariance
matrix shared by all classes and the mean vectors of different classes are modeled by
another Gaussian distribution whose covariance matrix is similar to the between-class
scatter matrix in LDA. The solution of this probabilistic LDA model is so similar to
that of LDA that it, unfortunately, also inherits some limitations of LDA. For example,
it needs probabilistic PCA (PPCA) to perform (unsupervised) dimensionality reduction
first to alleviate the SSS problem and it can only project data to(C − 1) dimensions.

Yu et al. [19] proposed a supervised extension of probabilistic PCA (PPCA) [22]
called SPPCA. This approach can be viewed as first concatenating each data point
with its class indicator vector and then applying PPCA to this extended form. From
the analysis of [23], the maximum likelihood solution of this approach is identical to
that of LDA. Yu et al. [19] also proposed a semi-supervised extension of SPPCA, called
S2PPCA, which can utilize unlabeled data as well.

The model in [20] is slightly different from others. It directly models the between-
class and within-class variances. So each data point can be described as the aggre-
gation of three parts: the common mean which is the mean of the whole dataset, the
between-class variance which describes the characteristics of different classes, and the
within-class variance which describes the characteristics of each data point. Prince and
Elder [20] also gave some extensions of this model useful for face recognition.

3 HPLDA: Heteroscedastic Probabilistic Linear Discriminant
Analysis

Suppose the whole dataset containsl labeled data points{(xi, yi)}l
i=1 from C classes

Πk (k = 1, . . . , C), wherexi ∈ RD with its labelyi ∈ {1, . . . , C} and classΠk con-
tainsnk examples. Moreover, all data points{xi}l

i=1 are independent and identically
distributed.

HPLDA is a latent variable model. It can be defined as follows:

xi = Wyi
ti + µyi

+ εi

ti ∼ N (0, Id)

εi ∼ N (0, τ−1
yi

ID), (1)

whereτi specifies the noise level of theith class,ti ∈ Rd with d < D, ID is theD×D
identity matrix andN (m,Σ) denotes a multivariate Gaussian distribution with mean
m and covariance matrixΣ. So for each classΠk, we have a differentWk. This is
different from the models proposed in [18–20] in which different classes share the same
matrixW. The graphical model for HPLDA is shown in Figure 1. From (1), we can get

P (xi|ti) = N (Wyi
ti + µyi

, τ−1
yi

ID)



and
P (xi) = N (µyi

,Φyi),

whereΦk = WkWT
k +τ−1

k ID. So the log-likelihoodL of the data set can be calculated
as

L = −1
2

C∑
k=1

∑
yi=k

[
(xi − µk)T Φ−1

k (xi − µk) + D ln 2π + ln|Φk|
]
, (2)

where|A| denotes the determinant of a square matrixA. We set the derivative ofL
with respect toµk to 0 to obtain the maximum likelihood estimate ofµk as

µk = m̄k ≡
1
nk

∑
yi=k

xi. (3)

Fig. 1.Graphical model for HPLDA.

Plugging Eq. (3) into (2), the log-likelihood can be simplified as

L = −1
2

C∑
k=1

nk

[
tr(Φ−1

k Sk) + Dln2π + ln|Φk|
]
, (4)

whereSk = 1
nk

∑
yi=k(xi−m̄k)(xi−m̄k)T is the estimated covariance matrix for the

kth class. SinceWk for different classes are independent, we can estimate eachWk

from the following expression:

Lk = −1
2
nk

[
tr(Φ−1

k Sk) + Dln2π + ln|Φk|
]
, (5)



which is similar to the log-likelihood in PPCA. So, following the analysis in [22], we
can obtain the maximum likelihood estimate ofWk as the eigenvectors ofSk cor-
responding to the largest eigenvalues andτ−1

k is equal to the mean of the discarded
eigenvalues.

3.1 Discussion

If all Wk and τk in (1) are the same, denoted byW and τ , then, from Eq. (4), the
log-likelihood can be expressed as

L = − l

2

[
tr(Φ−1Sw) + Dln2π + ln |Φ|

]
, (6)

whereSw = 1
l

∑C
k=1

∑
yi=k(xi−m̄k)(xi−m̄k)T is the within-class scatter matrix in

LDA andΦ = WWT + τ−1ID. So, also following the analysis in [22],W consists of
the top eigenvectors ofSw andτ−1 is equal to the mean of the discarded eigenvalues.
Then if the data points are whitened by the total scatter matrix, i.e., the total scatter
matrix of the dataset is the identity matrix, the estimatedW is just the solution in
traditional LDA.

There are some limitations in our model (1) though. From the above analysis, we
can see thatWk is estimated using the data points from thekth class only. However, in
many applications, labeled data are scarce due to the labeling effort required. So, as a
result,Wk may not be estimated very accurately. On the other hand, unlabeled data are
often available in large quantities at very low cost. It would be desirable if we can also
make use of the unlabeled data in the estimation ofWk. Moreover, the dimensionality
of Wk plays an important role in the performance of our model and it should preferably
be determined automatically. In the next section, we will discuss how to solve these two
problems together.

4 S2HPLDA: Semi-Supervised Heteroscedastic Probabilistic
Linear Discriminant Analysis

As in HPLDA, there arel labeled data points{(xi, yi)}l
i=1 from C classes. In addition,

there areu unlabeled data points{xl+1, . . . ,xl+u}, with n = l + u. Each classΠk

containsnk labeled examples. For the labeled data points, we still use (1) to model
them. For the unlabeled data points, we model them using a mixture model in which
each mixture component follows (1) with prior probabilityp(Πk) = πk. Thus the new
model can be defined as:

xi = Wyiti + µyi
+ εi, for i ≤ l

ti ∼ N (0, Id)

εi ∼ N (0, τ−1
yi

ID)

p(xi) =
C∑

k=1

πkp(xi|Πk), for i > l, (7)



whereti ∈ Rd. Moreover, we use the ARD method [21] to determinate the dimension-
ality of Wk by introducing a data-dependent prior distribution

p(Wk,j) ∼ N (0, ν−1
kj XLXT ),

whereWk,j is thejth column ofWk, X ∈ RD×n is the total data matrix including
both labeled and unlabeled data, andL, whose construction will be described later, is the
graph Laplacian matrix defined onX. The graphical model is shown in Figure 2. Using
the data-dependent prior onWk,j , we are essentially adopting the manifold assump-
tion, which has been widely used in dimensionality reduction [24] and semi-supervised
learning [25]. More specifically, if two points are close with respect to the intrinsic ge-
ometry of the underlying manifold, they should remain close in the embedding space
after dimensionality reduction. The parameterνkj can be viewed as an indicator of the
importance of the corresponding dimension ofWk to determine whether that dimen-
sion should be kept.

Fig. 2.Graphical model for S2HPLDA.

We now describe the construction ofL. Given the datasetD = {x1, . . . ,xn},
we first construct aK nearest neighbor graphG = (V,E), with the vertex setV =
{1, . . . , n} corresponding to the labeled and unlabeled data points and the edge set
E ⊆ V × V representing the relationships between data points. Each edge is assigned
a weightrij which reflects the similarity between pointsxi andxj :

rij =

{
exp

(
−‖xi−xj‖2

σiσj

)
if xi ∈ NK(xj) or xj ∈ NK(xi)

0 otherwise

whereNK(xi) denotes the neighborhood set of theK-nearest neighbors ofxi, σi the
distance betweenxi and itsKth nearest neighbor, andσj the distance betweenxj and
its Kth nearest neighbor. This way of constructing the nearest neighbor graph is called
local scaling[26]. ThenG is the similarity graph with its(i, j)th element beingrij , D
is a diagonal matrix whose entries are the column sums ofG, andL = D−G.



Model (7) has parameters{µk}, {τk}, {πk}, {νkj}, {Wk}. We use the expectation
maximization (EM) algorithm [27] to estimate them from data. Here we introducezi

as a hidden indicator vector for each unlabeled data pointxi, with zik being 1 if xi

belongs to thekth class. Since the number of parameters in this model is quite large, we
apply two-fold EM [28] here to speed up convergence. In the E-step of the outer-fold
EM, {zi} are the hidden variables. We estimatep(zik = 1) as:

p(zik = 1) = p(Πk|xi) =
πkp(xi|Πk)∑C
j=1 πjp(xi|Πj)

where

p(xi|Πk) =
∫

p(xi|ti,Wk,µk, τk)p(ti)dti

= N (xi|µk,WkWT
k + τ−1

k ID).

In the M-step of the outer-fold EM, we aim to estimate{πk} and{µk}. The complete-
data log-likelihood is defined as

LC =
l∑

i=1

ln p(xi|Πyi
) +

n∑
i=l+1

C∑
k=1

zik

{
ln

[
πkp(xi|Πk)

]}
.

So the expectation of the complete-data log-likelihood in the M-step of the outer-
fold EM can be calculated as

〈LC〉 =
C∑

k=1

∑
yi=k

{
−1

2
(xi − µk)T Φ−1

k (xi − µk)− 1
2

ln |Φk| −
D

2
ln 2π

}
+

C∑
k=1

n∑
i=l+1

〈zik〉
{
−1

2
(xi − µk)T Φ−1

k (xi − µk)− 1
2

ln |Φk|+ lnπk −
D

2
ln 2π

}
,

whereΦk = WkWT
k + τ−1

k ID. We maximize the expectation of the complete-data
log-likelihood with respect to{πi} and{µi}. The update rules are given by

π̃k =
∑n

i=l+1〈zik〉∑n
i=l+1

∑C
k=1〈zik〉

=
1
u

n∑
i=l+1

〈zik〉

µ̃k =

∑
yi=k xi +

∑n
i=l+1〈zik〉xi

nk +
∑n

i=l+1〈zik〉
,

where〈·〉 denotes the expectation of a variable.
In the E-step of the inner-fold EM,{ti} are the hidden variables. We estimate

p(ti|xi,Πk) = N (ti|Σ−1
k WT

k (xi − µ̃k), τ−1
k Σ−1

k )

〈ti|Πk〉 = Σ−1
k WT

k (xi − µ̃k)

〈titT
i |Πk〉 = τ−1

k Σ−1
k + 〈ti|Πk〉〈ti|Πk〉T ,



with Σk = τ−1
k Id + WT

k Wk.
In the M-step of the inner-fold EM, we aim to estimate{Wk}, {νkj} and{τk}. The

complete-data log-likelihood can be calculated as

L̃C =
l∑

i=1

ln p(xi, ti|Πyi) +
C∑

k=1

d∑
j=1

p(Wk,j) +
n∑

i=l+1

C∑
k=1

〈zik〉 ln{πkp(xi, ti|Πk)}.

The expectation of the complete-data log-likelihood can be calculated as

〈L̃C〉 =

CX
i=1

X
yj=i

�
D

2
ln τi −

1

2
tr(〈tjt

T
j |Ci〉) −

τi

2
‖xj − µ̃i‖

2+

τi〈tj |Ci〉T WT
i (xj − µ̃i) −

τi

2
tr(WT

i Wi〈tjt
T
j |Ci〉)

o
+

CX
i=1

nX
j=l+1

〈zji〉
�

D

2
ln τi −

1

2
tr(〈tjt

T
j |Ci〉) −

τi

2
‖xj − µ̃i‖

2+

τi〈tj |Ci〉T WT
i (xj − µ̃i) −

τi

2
tr(WT

i Wi〈tjt
T
j |Ci〉) + ln π̃i

o
+

CX
i=1

dX
j=1

�
D

2
ln νij −

1

2
νijW

T
i,jL

−1
? Wi,j

�
,

whereL? = XLXT . Maximization of the expected complete-data log-likelihood with
respect toWk, τk andνkj gives the following update rules:

W̃k = (τkSkWk − L−1
? WkΛkΣk)(ñkId + τkΣ−1

k WT
k SkWk)−1

τ̃k =
Dñk

tr
{
(ID −WkΣ−1

k WT
k )2Sk + ñkτ−1

k WkΣ−1
k WT

k

}
ν̃kj =

D

W̃T
k,jL

−1
? W̃k,j

,

whereL? = XLXT , Λk = diag(νk1, . . . , νkM ) is a diagonal matrix with the(j, j)th
element beingνkj , ñk = nk + uπ̃k, and Sk =

∑
yi=k(xi − µ̃k)(xi − µ̃k)T +∑n

i=l+1〈zik〉(xi − µ̃k)(xi − µ̃k)T .
After estimating the parameters, we can useνkj to determinate the dimensionality

of Wk. We can set a thresholdη and discard theWk,j whose correspondingνkj is
larger thanη. In our experiments, we setη to be 10000.

For a test data pointxtest, we classify it to classΠk wherek = arg maxj p(Πj |xtest).

4.1 Discussion

Our S2HPLDA model has advantages over existing probabilistic subspace methods. In
our method, each class is modeled by a Gaussian distribution with a possibly different
covariance matrix, giving our model higher expressive power than existing methods.



Moreover, our model, being a semi-supervised method, can utilize unlabeled data but
most other probabilistic LDA models cannot, except S2PPCA.

There exist several variants of LDA [10–12] which also utilize unlabeled data to al-
leviate the SSS problem. Cai et al. [10] and Zhang and Yeung [11] used unlabeled data
to define a regularization term to incorporate the manifold and cluster assumptions,
which are two widely adopted assumptions in semi-supervised learning. Zhang and Ye-
ung [12] used unlabeled data to maximize the criterion of LDA and estimate the labels
simultaneously, in a way similar to the idea behind transductive SVM (TSVM) [29, 30].
Unlike these methods, our method works in a different way. We use a Gaussian mixture
model to model the unlabeled data with each component corresponding to one class.
From previous research in semi-supervised learning, unlabeled data are more suitable
for generative models since unlabeled data can help to estimate the data density [13]
and our method also follows this strategy.

According to [31], integrating out all parameters is better than performing point
estimation in terms of the generalization performance. In our future research, we plan
to propose a fully Bayesian extension of S2HPLDA by placing priors on the parameters
of S2HPLDA. For example, we can add a Dirichlet prior to(π1, . . . , πC), a Gaussian
prior toµk, and Gamma priors toτk andνkj :

(π1, . . . , πC) ∼ Dir(α0, . . . , α0)
µk ∼ N (µ0, β0ID)
τk ∼ Gamma(a0, b0)

νkj ∼ Gamma(c0, d0).

Since direct inference is intractable, we may resort to the variational approximation
approach [32].

5 Experiments

In this section, we report experimental results based on two face databases and one
object database to evaluate the performance of our method and compare it with some
related probabilistic subspace methods.

5.1 Experimental Setup

Subspace methods are widely used in face recognition and object recognition appli-
cations. Previous research found that face and object images usually lie in a low-
dimensional subspace of the ambient image space. Eigenface [33] (based on PCA) and
Fisherface [5] (based on LDA) are two representative subspace methods. Many variants
have also been proposed in recent years. These subspace methods use different dimen-
sionality reduction techniques to obtain a low-dimensional subspace and then perform
classification in the subspace using some classifier. Some researchers also proposed
probabilistic versions of these subspace methods, with PPCA [22] and SPPCA [19]
being two popular ones. From the analysis in [22], the maximum likelihood solution
to PPCA is identical to that to PCA. Since the models proposed in [19] and [23] are



identical, then from the analysis in [23], the maximum likelihood solution to SPPCA
is also the same as that to LDA. Moreover, PPCA and SPPCA can deal with missing
data using the EM algorithm, but PCA and LDA cannot. In our experiments, we study
our method empirically and compare it with several probabilistic subspace methods,
including PLDA [20], SPPCA [19] and S2PPCA [19]. Note that PLDA and SPPCA are
supervised, but S2PPCA and our method S2HPLDA are semi-supervised in nature. For
SPPCA and S2PPCA, we use a simple nearest-neighbor classifier to perform classifica-
tion after dimensionality reduction.

5.2 Face Recognition

We use the ORL face database [5] for the first experiment. The ORL face database con-
tains 400 face images of 40 persons, each having 10 images. These face images contain
significant variations in pose and scale. Some images from the database are shown in
Figure 3. We randomly select seven images for each person to form the training set and
the rest for the test set. Of the seven images for each person,p ∈ {2, 3} images are ran-
domly selected and labeled while the other images remain unlabeled. We perform 10
random splits and report the average results across the 10 trials. Table 1 reports the error
rates of different methods evaluated on the unlabeled training data and the test data sep-
arately. For each setting, the lowest classification error is shown in bold. Since S2PPCA
exploits the structure of unlabeled data, we can see that its performance is better than
PLDA and SPPCA. Moreover, S2HPLDA relaxes the homoscedasticity assumption and
so it achieves better performance than its homoscedastic counterpart S2PPCA in our
settings. From Table 1, we can see that the performance of PLDA is very bad, proba-
bly because it gets trapped in an unsatisfactory local optimum when running the EM
algorithm.

Fig. 3.Some images for one person in the ORL database

The PIE database [34] is used in our second experiment. This database contains
41,368 face images from 68 individuals and these images have large variations in pose,
illumination and expression conditions. For our experiments, we select the frontal pose
(C27)1 with varying lighting and illumination conditions and there are about 49 images
for each subject. Some images from the database are shown in Figure 4. The experimen-
tal setting is almost the same as that of the first experiment. The only difference is that

1 This face database can be downloaded fromhttp://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html .



Table 1. Recognition error rates (in mean±std-dev) on ORL for two differentp values. 1ST

TABLE : p = 2; 2ND TABLE : p = 3.

Method Error rate (unlabeled)Error rate (test)

PLDA 0.7141±0.0803 0.7016±0.0640
SPPCA 0.4562±0.1219 0.4578±0.0710
S2PPCA 0.2703±0.0332 0.2422±0.0366
S2HPLDA 0.1406±0.0231 0.1781±0.0308

Method Error rate (unlabeled)Error rate (test)

PLDA 0.5156±0.0744 0.5042±0.0603
SPPCA 0.4359±0.0713 0.4604±0.0322
S2PPCA 0.2625±0.0595 0.2000±0.0245
S2HPLDA 0.1375±0.0135 0.1562±0.0336

we use 22 images to form the training set. Of these 22 images, we randomly select
p ∈ {3, 4, 5, 6} images and label them, leaving the remaining images unlabeled. Each
setting is also repeated 10 times. Table 2 reports the average results over the 10 trials.
From the results, we can see that our method again gives the best performance.

Fig. 4.Some images for one person in the PIE database

5.3 Object Recognition

We use the COIL database [35] for our object recognition experiment. This database
contains 1,440 grayscale images with black background for 20 objects. For each object,
the camera moves around it in pan at intervals of 5 degrees and takes a total of 72 differ-
ent images. These objects exhibit a wide variety of complex geometric and reflectance
characteristics. Some sample images for the 20 objects are shown in Figure 5. We use
22 images from each object to form the training set. Of the 22 images,p ∈ {3, 4, 5, 6}
images are randomly selected as labeled data and the rest as unlabeled data. We perform
10 random splits on each configuration and Table 3 reports the average results. From
the results, our method also outperforms other methods under all four settings.

6 Conclusion

In this paper, we have presented a new probabilistic LDA model. This semi-supervised,
heteroscedastic extension allows it to overcome some serious limitations of LDA. As



Table 2. Recognition error rates (in mean±std-dev) on PIE for four differentp values. 1ST TA-
BLE: p = 3; 2ND TABLE : p = 4; 3RD TABLE : p = 5; 4TH TABLE : p = 6.

Method Error rate (unlabeled)Error rate (test)

PLDA 0.8421±0.0142 0.8492±0.0212
SPPCA 0.4509±0.0487 0.4798±0.0590
S2PPCA 0.3367±0.0088 0.3639±0.0139
S2HPLDA 0.3066±0.0131 0.3109±0.0397

Method Error rate (unlabeled)Error rate (test)

PLDA 0.7549±0.0451 0.7469±0.0532
SPPCA 0.2741±0.0202 0.2654±0.0073
S2PPCA 0.2545±0.0110 0.2520±0.0046
S2HPLDA 0.2096±0.0324 0.2225±0.0066

Method Error rate (unlabeled)Error rate (test)

PLDA 0.7029±0.0018 0.7201±0.0154
SPPCA 0.2080±0.0153 0.2409±0.0120
S2PPCA 0.2011±0.0055 0.2330±0.0046
S2HPLDA 0.1743±0.0177 0.1933±0.0108

Method Error rate (unlabeled)Error rate (test)

PLDA 0.7096±0.0351 0.7215±0.0420
SPPCA 0.1875±0.0104 0.2119±0.0143
S2PPCA 0.1590±0.0390 0.1724±0.0347
S2HPLDA 0.1220±0.0149 0.1450±0.0204

Fig. 5.Some images for different objects in the COIL database



Table 3. Recognition error rates (in mean±std-dev) on COIL for four differentp values. 1ST

TABLE : p = 3; 2ND TABLE : p = 4; 3RD TABLE : p = 5; 4TH TABLE : p = 6.

Method Error rate (unlabeled)Error rate (test)

PLDA 0.4026±0.0112 0.4000±0.0311
SPPCA 0.7303±0.1172 0.7195±0.1393
S2PPCA 0.3303±0.0428 0.3270±0.0410
S2HPLDA 0.3145±0.0651 0.3015±0.0474

Method Error rate (unlabeled)Error rate (test)

PLDA 0.3694±0.0118 0.3850±0.0156
SPPCA 0.6958±0.0727 0.7075±0.0658
S2PPCA 0.3500±0.0039 0.3195±0.0021
S2HPLDA 0.3167±0.0314 0.3005±0.0375

Method Error rate (unlabeled)Error rate (test)

PLDA 0.3471±0.0208 0.3290±0.0792
SPPCA 0.7691±0.0769 0.7815±0.0884
S2PPCA 0.3221±0.0062 0.2865±0.0346
S2HPLDA 0.2438±0.0265 0.2670±0.0566

Method Error rate (unlabeled)Error rate (test)

PLDA 0.3156±0.0707 0.3085±0.0559
SPPCA 0.7844±0.0398 0.7840±0.0226
S2PPCA 0.3391±0.0420 0.3270±0.0028
S2HPLDA 0.2250±0.0312 0.2200±0.0354



said earlier in the paper, one natural extension is a fully Bayesian extension to boost the
generalization performance of the probabilistic model. Another possibility is to apply
the kernel trick to introduce nonlinearity into the model using techniques such as that
in [36].
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