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Abstract

Linear Discriminant Analysis (LDA), which works by
maximizing the within-class similarity and minimizing the
between-class similarity simultaneously, is a popular di-
mensionality reduction technique in pattern recognition and
machine learning. In real-world applications when labeled
data are limited, LDA does not work well. Under many situ-
ations, however, it is easy to obtain unlabeled data in large
quantities. In this paper, we propose a novel dimensional-
ity reduction method, called Semi-Supervised Discriminant
Analysis (SSDA), which can utilize both labeled and unla-
beled data to perform dimensionality reduction in the semi-
supervised setting. Our method uses a robust path-based
similarity measure to capture the manifold structure of the
data and then uses the obtained similarity to maximize the
separability between different classes. A kernel extension
of the proposed method for nonlinear dimensionality reduc-
tion in the semi-supervised setting is also presented. Exper-
iments on face recognition demonstrate the effectiveness of
the proposed method.

1. Introduction

Linear Discriminant Analysis (LDA) [13, 21] is a pop-
ular dimensionality reduction technique in pattern recogni-
tion and machine learning. It aims to maximize the within-
class similarity while minimizing the between-class simi-
larity simultaneously. LDA is widely used in many appli-
cations, such as face recognition, speech recognition, and
character recognition, due to its effectiveness and computa-
tional efficiency. However, in some applications, LDA en-
counters the so-called small sample size (SSS) problem [11]
which arises when the sample size is much smaller than
the dimensionality of the feature space. The performance
of LDA will seriously deteriorate under such situations be-
cause there may not be enough data to make the within-class
scatter matrix nonsingular. Several methods have been pro-
posed to overcome the SSS problem, e.g., PseudoLDA [18],
PCA+LDA [1], Direct-LDA [27], NullLDA [11], and Du-
alLDA [24]. PseudoLDA overcomes the singularity prob-

lem by substituting the inverse of the within-class scat-
ter matrix with its pseudo-inverse. PCA+LDA first ap-
plies PCA [17] to project the data into a lower-dimensional
space so that the within-class scatter matrix computed
there is nonsingular, and then applies LDA in the lower-
dimensional space. Direct-LDA projects data into the range
space of the between-class scatter matrix by diagonalizing
the between-class scatter matrix and then minimizes the
within-class scatter in the reduced space. NullLDA first
projects the data to the null space of the within-class scat-
ter matrix and then maximizes the between-class scatter in
this space. It is similar to the Discriminative Common Vec-
tors method [6]. DualLDA, which combines the ideas from
PCA+LDA and NullLDA, applies LDA in the range space
and the null space of the within-class scatter matrix sepa-
rately and then integrates the two parts together to get the
final transformation. There also exists another approach to
address the SSS problem, with 2DLDA [26] being the rep-
resentative of this approach. The major difference between
2DLDA and the above algorithms is in the data represen-
tation. Specifically, 2DLDA works on data represented as
matrices instead of vectors so that the dimensionality of the
data representation can be kept small to avoid the SSS prob-
lem. Moreover, in some applications such as face and object
recognition, 2DLDA can preserve the spatial information in
an image which may be useful for classification.

In many real-world applications, labeled data are hard
or expensive to obtain because laborious human labeling
effort is required. On the other hand, abundant supply
of unlabeled data is available at very low cost. In recent
years, semi-supervised learning has emerged as a hot topic
within the machine learning research community. One com-
mon form of semi-supervised learning is to utilize unla-
beled data to aid classification or regression tasks when la-
beled data are scarce. A good survey of semi-supervised
learning methods can be found in [29]. Some early semi-
supervised learnng methods include Co-Training [4] and
Transductive SVM [3]. More recently, graph-based semi-
supervised learning methods [2, 28, 30] have aroused the
interests of many researchers. These methods model the
relationships between data points in the form of a graph,



in which label information from the labeled data points is
propagated to the unlabeled data points through the graph.

This leads us to ask the following question: Can un-
labeled data be utilized to help LDA to alleviate the
SSS problem? 1In this paper, we propose a novel semi-
supervised dimensionality reduction algorithm called Semi-
Supervised Discriminant Analysis (SSDA). Even though
there already exists another semi-supervised LDA algo-
rithm called SDA [5] which exploits the local neighborhood
information of data points in performing dimensionality re-
duction, our SSDA algorithm exploits the global structure
of the data and is robust against noise in defining the neigh-
borhood relationships. SSDA first constructs a graph us-
ing a robust path-based similarity measure to capture the
manifold structure of the data. Unlike some existing graph-
based semi-supervised learning methods which make use of
the similarity or affinity matrix to define a manifold-based
regularization term for an optimization problem formulated
under the regularization framework, we propose a new op-
timality criterion for LDA by exploiting the interplay be-
tween labeled and unlabeled data. Like the original LDA
algorithm, learning in SSDA also reduces to solving a gen-
eralized eigenvalue problem to obtain the projection direc-
tions for dimensionality reduction.

The rest of this paper is organized as follows. We first
briefly review the traditional LDA algorithm in Section 2.
We then present our SSDA algorithm in Section 3. Section 4
reports some experimental results based on two commonly
used face databases to demonstrate the effectiveness of our
method. Finally, we conclude our paper in the last section.

2. Background

Given a training set of n data points, D = {z1,...,2,}
where z; € RY (i = 1,...,n), LDA tries to find a projec-
tion matrix W* that maximizes the ratio of the trace of the
between-class scatter matrix S to that of the within-class

scatter matrix Sy,:
trace(WT S, W)
W* = _— 1
are mix trace(WT S, W) M

Let the data set D be partitioned into C' > 2 disjoint classes
IT; (i = 1,...,C) where class II; contains n; examples.
The scatter matrices S, and S, are defined as:
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where m = L 3" | x; is the sample mean of the whole
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W* can be computed from the eigenvectors of S 1S,
where S ! denotes the matrix inverse of S,, [15]. Accord-
ing to [25], W* computed as above may not be optimal
with respect to the optimality criterion in Eq. (1), but it is a
computationally simple and good approximate solution suf-
ficient for many applications. Thus many applications still
use this approach to obtain the solution.

Fukunnaga [15] proved that W* can also be computed
by the simultaneous diagonalization of S,, and S,. Fi-
nally, W* satisfies W*7S,,W* = I, and W*T S,W* =
diag{\1(S;1Sp), ..., \e(Sy,1Sp)}, where \;(B) is the ith
largest eigenvalue of matrix B, I; is the identity matrix of
size t X t, and diag{dy,...,d;} is a t x t diagonal matrix
whose (i,4) element is d;.

3. Our Semi-Supervised Discriminant Analysis
Algorithm

3.1. Robust Path-Based Similarity Measure

We denote a set of n points in some multidimensional
Euclidean space by D = {x1,...,x,}. This data set can
be represented by an undirected graph G = (V, E), with
the vertex set V.= {1,...,n} corresponding to the data
points in D and the edge set £ C V' x V representing the
relationships between data points. Each edge is assigned a
weight w;; which reflects the similarity between points x;
and x;:

xi—xq|? . .
. — exp (_ II: Z2U2JH ) fori # j @
! 0 fori = j.

The scaling parameter o controls how fast w;; decreases
with the distance between x; and x;.

The pairwise similarity w;; defined above is only deter-
mined by the Euclidean distance between x; and x;. It can-
not reveal whether the two points belong to the same class.
To capture this information, we exploit the underlying man-
ifold structure of the whole data set based on a robust path-
based similarity measure as described below.

We first define a path-based similarity measure as in our
previous work [7, 8]. Let P;; denote the set of all paths
connecting vertices ¢ and j. For each path p € P;;, the
effective similarity sfj is the minimum edge weight along
the path. The path-based similarity measure s;j is defined
as the maximum effective similarity among all paths in P;;:

/ .
S;; = max ¢ min w 5
ij = e {1 o p[h]p[h+u} ) ©)
where p[h] denotes the hth vertex along path p and |p| de-
notes the number of vertices in p.

According to [7, 8], this similarity is sensitive to noise
and outliers. We proposed a robust estimation approach to



compute the weight o for each point z; as:

v 2
al= 3 e (-l

Z‘jEM

where N; denotes the neighborhood of x;. To make the
weights insensitive to o, normalized weights are computed
as a; = o/ maxy,ep o

Finally, the robust path-based similarity measure is ex-
pressed as:

Sij = max {1 min Apin }%[hﬂ]wp[h]p[hﬂl} - (©)

3.2. Objective Function for SSDA

Suppose we have [ labeled examples z1,xo,...,2; €
RN with class labels from C classes II; (i = 1,...,C)
and m unlabeled examples x;41,2;+2,...,Z14m € RV
with unknown class memberships. So there are a total of
n = | + m examples and usually [ < m. When [ is too
small compared with the input dimensionality, LDA gener-
ally does not perform very well. To remedy this problem,
we want to incorporate unlabeled data to improve the per-
formance of LDA. We propose to maximize a new objective
function as follows:

wT Syw
e wl'Spw + J(w)’ ™
where w is an [V-dimensional projection vector, Sj and S,
are the between-class and within-class scatter matrices as
defined in Egs. (2) and (3), and J(w) is a regularization
term which is learned from both the labeled and unlabeled
data.

We first construct the robust path-based similarity matrix
S using Eq. (6) based on the whole data set. In the follow-
ing, we will describe how to compute J(w) using S.

First, we divide S into four blocks:

S” Slu

where S! captures the similarity between labeled data
points, S' and S capture the similarity between labeled
and unlabeled data points with S™ = (S*)T, and S** cap-
tures the similarity between unlabeled data points. Because
ground-truth label information already exists for the labeled
data and the similarity information S” may not be fully in
line with the label information, we choose to discard S*.
Since S* and S* contain the same information, we just
need to use one of them, say S™. Recall that the optimality
criterion of LDA favors having data points from the same
class to be close to their class mean. Following this idea, if
an unlabeled data point is similar to some labeled data point
from the ¢th class, then we expect the unlabeled data point

to be close to the class mean of the ith class. We define the
similarity );; between the ith unlabeled data point x;;; and
the jth class as Q;; = max,,er, {S}'}, where S¥' is (i,1)
element of S/, That is, if an unlabeled data point z;, ; has
higher similarity to some labeled point from the jth class,
then z;, is more likely to belong to the jth class. Let Q
denote the similarity matrix between unlabeled data points
and class means with @;; being its elements. Similar to
[16], a Laplacian-style measure is defined as follows:
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where X, = [241, ..., Z14+m], T is the class mean of the
ith class, M = [my,...,m¢], and Dy and D5 are diagonal
matrices whose entries are the row sums and column sums
of @, respectively. The second last step in Eq. (8) is just to
make L; symmetrical to facilitate subsequent processing.

Next, we discuss how to utilize S"*. If two points have
high similarity, we expect them to be close to each other in
the reduced space. Thus, a Laplacian-style measure can be
defined as follows:

JQ(U))
= Z(U)Tleri — walJrj)QS;Lju

ij
= 2wt [Z <Z SZ}”) xl_‘_ia;ﬁ_z ZSU T; w]
i J

= 2w X, (D" - S") X w
= 2w'XyLoXTw, 9)

where S is (i,j) element of S“*, D“* is a diago-
nal matrix whose entries are the column sums of S** and
Ly = D%* — S"" ig the Laplacian matrix [12] of S“*.
Finally, we combine Egs. (8) and (9) to get the objective
function for the optimization problem of our SSDA algo-
rithm and maximize it with respect to w:

wT Syw

10
B W (S + L1 + aXuLoXT)w’ (19)

where « is a control parameter.
According to [15], solving this optimization problem is
equivalent to solving the following generalized eigenvalue



problem:
Spw = NSy + L1 + aX, Lo XD )w. (11)

When the number of data points is smaller than the di-
mensionality of the data, S,, + L1 + a X, Ly X I in Eq. (11)
may be singular and hence the eigen-decomposition prob-
lem becomes unstable. To avoid this problem, we adopt the
idea of Tikhonov regularization as in regularized discrimi-
nant analysis [14]. So the generalized eigenvalue problem
in Eq. (11) becomes:

Spw = NSy + L1 + aX, Lo XTI + 1w, (12)
where § > 0 and I is the identity matrix.

3.3. The Algorithm

The SSDA algorithm can be summarized as follows:
1. Construct the robust similarity matrix .S using Eq. (6).

2. Construct the scatter matrices S, and S, defined in
Egs. (2) and (3) using only labeled data.

3. Construct the graph Laplacian matrices L; and Lo for
the regularization terms using Egs. (8) and (9).

4. Solve the generalized eigenvalue problem in Eq. (12).
Since the rank of Sy is at most C' — 1, we have C' — 1
eigenvectors, denoted as wy,...,wc—1, correspond-
ing to the nonzero eigenvalues.

5. Let W = [wy,ws, ..., wc—1]. Data points can be em-
bedded into the lower-dimensional space via the fol-
lowing transformation: = — y = W7z,

3.4. Discussions

As pointed out in [10], the similarity measure defined
in Eq. (5) is a density-sensitive similarity measure. So our
method can be regarded as adopting the so-called cluster
assumption in semi-supervised learning [9, 10], which says
that two points are likely to have the same class label if there
exists a path connecting them by passing through regions of
high density only. Here we interpret the cluster assumption
in a somewhat different way. Specifically, if two points are
connected by a path in which adjacent vertices have high
similarity, then the two points will likely belong to the same
class.

SDA [5] is also a semi-supervised discriminant analy-
sis method which makes use of both labeled and unlabeled
data. Unlike our method, however, SDA adopts the so-
called manifold assumption [28], which says that nearby
points have similar low-dimensional representations and
use neighborhood information to find better embedding.
However, in situations where the intra-class variance is

larger than the inter-class variance, the neighborhood infor-
mation may be noisy and the performance of SDA will de-
teriorate. Our experimental results confirm this speculation.
In contrast to SDA, our method exploits the global manifold
structure which will not be affected by noisy neighborhood.
In general, the manifolds can be nonlinear and elongated
in structure. With the help of the path-based similarity mea-
sure, we can convert elongated manifolds into compact ones
which can help further classification.

3.5. Kernel SSDA

The SSDA algorithm presented above is a linear method.
In general, it may fail to handle data with nonlinear mani-
fold structure. In this subsection, we discuss how to extend
SSDA to a reproducing kernel Hilbert space (RKHS) which
corresponds to a feature space.

We consider the RKHS or feature space F induced by
a nonlinear mapping ¢ : R®™ — F. For a proper ¢,
the inner product operation (-,-) in F can be defined as
some positive semi-definite kernel function K (-, -) such that
(o(x),d(y)) = K(x,y). Some popular kernel functions
are: Gaussian kernel K (x,7y) = exp(— ||z —y||?/o?); poly-
nomial kernel K (z,y) = (1 + 27y)4.

Suppose ¢(m) = 0, where /m is the sample mean of
the labeled data; otherwise, we can apply a centering trans-
form to make ¢(m) = 0. Let &; = [¢(x1),...,¢(x;)] be
the labeled data matrix in F, ®,, = [¢p(x141),. .., ¢(zn)]
be the unlabeled data matrix in F, & = [P, P,] =
[p(z1),...,¢(xy,)] be the total data matrix in F, and ¥ =
[p(T1), ..., ¢(Mc)] be the class mean matrix in F. The
between-class scatter matrix Slf’ in F can be calculated as
SY = WDWT, where D is a diagonal matrix whose (i, )
element is n;. The within-class scatter matrix S¢ in F is
defined as S¢ = S¢ — S,? = ®,®7 — DU, where S? s
the total scatter matrix on labeled data in F.

The first regularization term Jf) can be formulated as

J? = &,D,07 + UD 0T — 6,QuT — vQ T,
So the problem in Eq. (11) in F can be written as follows:
UDUTy = N(@®] — W DU +J? +a®,Ld v, (13)

From the analysis of [20], the eigenvector of Eq. (13) is
a linear combination of ¢(z1), ..., ¢(x,). Thus there exist
coefficients v;,4 = 1,...,nsuchthatv = 31" | v, P(z;) =
®a, where a = (v1,...,7n)7.

With some algebraic calculations, we can get

DUy = A\ @] — VDT + J? + ad, L®] v
DU ®a = (@, 0] — WDV + J? 4+ a®,L®])da
"DV ®a = A" (@0 — DU 4 J?

+a®, Ly®])da.

U



Figure 1. Sample images for one subject in the CMU PIE face database. For each subject, there are about 49 frontal face images taken

under different illumination conditions.

Since ®TU, ®T®,, ®Td,, and <I>TJ1¢CI> can be calcu-
lated by applying the kernel function K, the generalized
eigenvalue problem can be solved without knowing the
explicit form of the mapping ¢. Let the column vec-
tors a1, ...,ac—1 be the eigenvectors corresponding to the
nonzero eigenvalues and T = [ay,...,ac—1] be the trans-
formation matrix. Then a data point x can be projected
into the lower-dimensional space via the following trans-
formation: z — y = YT®T¢(x) = YTK, where K =
[K(z1,7),...,K(z,,2)]T.

4. Experiments

In this section, we report some experimental results
based on two face databases to evaluate the performance
of SSDA.

4.1. Experimental Setup

Subspace-based methods have achieved great successes
in many face recognition applications [23, 1]. Previous
research found that face images usually lie in some low-
dimensional subspace within the ambient image space.
Two famous methods are Eigenface [23] (based on PCA)
and Fisherface [1] (based on LDA). Many variants have
also been proposed. These subspace methods use differ-
ent dimensionality reduction techniques to obtain a low-
dimensional subspace and then perform classification in the
subspace using some classifier. Unlike previous methods,
SDA and our method, SSDA, are semi-supervised subspace
methods derived from LDA but use both labeled and un-
labeled data for training. In our experiments, we compare
SSDA with several subspace methods, including Eigenface,
Fisherface, and SDA. After dimensionality reduction has
been performed, we use a simple nearest-neighbor classifier
to perform classification in the subspace. Moreover, we also
compare SSDA with the baseline method which simply uses
the nearest-neighbor classifier in the original image space.
For Fisherface, we use PCA to preserve 95% variance of the
data. The parameter 3 in Eq. (12) is fixed to 10~3 for SSDA
and so is SDA.

4.2. PIE Face Database

We use the PIE face database [22] for the first set of ex-
periments. The database contains 41,368 face images from

68 individuals. The face images were captured under vary-
ing pose, illumination and expression conditions. For our
experiments, we choose the frontal pose (C27) with varying
lighting and illumination conditions. There are about 49
images for each subject. Before the experiments, we resize
each image to a resolution of 32 x 32 pixels. Some sample
images are shown in Figure 1.

In the first experiment, 30 images are randomly selected
for each person to form the training set and the rest to form
the test set. Of the 30 images for each person, one image
is randomly selected and labeled while the other 29 images
remain unlabeled. We perform 20 random splits and report
the average results over the 20 trials. Table 1 reports the
recognition rates of different methods evaluated on the un-
labeled training data and the test data separately. Because
there is only one labeled training example per person, Fish-
erface cannot work because the within-class scatter matrix
is a zero matrix. The baseline method does not consider the
manifold structure of data and Eigenface, an unsupervised
method, does not utilize the labeled data, and hence both
methods get poor results. On the other hand, both SDA and
SSDA exploit the manifold structure and the label informa-
tion and hence get better results. Moreover, SSDA achieves
the best results among all methods tested.

Table 1. Recognition error rates (in mean=std-dev) on PIE when
there are one labeled and 29 unlabeled examples.

’ Method \ Unlabeled error \ Test error ‘
Baseline 0.7523+0.0146 | 0.7579+0.0150
Eigenface | 0.787440.0131 | 0.793540.0148
Fisherface - -

SDA 0.6016+0.0372 | 0.6032+0.0330
SSDA 0.5341+0.0319 | 0.5403+0.0333

In the second experiment, the settings are almost the
same as the first one. The only difference is that two im-
ages are randomly selected and labeled leaving the other
28 images unlabeled. Table 2 reports the results. It can be
seen that SSDA gives better result than Fisherface, imply-
ing that unlabeled data can help LDA when there are only
very few labeled examples. SSDA again achieves the best
result among all methods. To our surprise, SDA is worse
than Fisherface. This is because SDA treats the points in the
neighborhood as equally important, which can bring some



Figure 2. Sample images for one subject in the AR face database. The images in the first and second rows were taken in different sessions.
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Figure 3. Recognition error rates of SSDA on the unlabeled train-
ing data and the test data of PIE under varying o values.

noise to deteriorate the performance. Moreover, we also
investigate the effect of parameter «v in Eq. (12) on the per-
formance of SSDA. The recognition error rates on the unla-
beled training data and the test data are plotted in Figure 3.
We can see that when « varies in the range [0.1,1.1], the
performance of SSDA only changes slightly for both data
sets, with the maximum percentage change being 0.46% for
the unlabeled training data and 0.77% for the test data. This
shows the relative insensitivity of a and hence it is easy to
choose an appropriate value for SSDA to deliver good per-
formance.

Table 2. Recognition error rates (in mean=std-dev) on PIE when
there are two labeled and 28 unlabeled examples.

’ Method \ Unlabeled error \ Test error ‘
Baseline 0.6155+0.0171 | 0.62784+0.0150
Eigenface | 0.6556+0.0163 | 0.6658+0.0148
Fisherface | 0.315940.0254 | 0.3303+0.0264
SDA 0.4960+0.0282 | 0.5088+0.0330
SSDA 0.1809+0.0225 | 0.1972+0.0217

4.3. AR Face Database

We next use the AR face database [19] for the second
set of experiments. The database contains over 4,000 color
face images from 126 persons, which include 70 men and 56
women. The face images are all frontal view images with
different expressions, illuminations and occlusions. There
are 26 images for each person taken in two sessions, each

having 13 images. In our experiments, 2,600 images of 100
persons (50 men and 50 women) are used. Before the ex-
periments, each image is converted to gray scale and nor-
malized to 33 x 24 pixels. Some typical images are shown
in Figure 2.

We conduct four experiments on the AR database. For
each subject, we randomly select 13 images for the training
set and the rest for the test set. Among the 13 images cho-
sen for the training set, we randomly choose p € {2,3,4,5}
images and label them. The four experiments correspond to
different values of p. For each configuration, we perform
20 random trials and report the average recognition results
in Table 3. We can see that SSDA achieves the best results
among all methods in all four experiments. To our surprise,
SDA is only slightly better than the baseline method and
Eigenface but is significantly worse than Fisherface. A pos-
sible explanation is that the face images in the AR database
have large intra-person (or intra-class) variability due to ex-
pression differences and occlusion, so that intra-person vari-
ance may be larger than inter-person variance. As a result,
nearby points may belong to different classes. Moreover,
the face images were taken during two different sessions at
different times so that the appearance of the same person
may look different, resulting in different distributions of the
data points in the two sessions. The neighbors of a data
point are more likely to belong to different classes. If data
points within the same neighborhood are treated to be from
the same class as SDA does, the recognition accuracy may
be seriously affected. As in the first set of experiments for
the PIE database, we also investigate the effect of parameter
a in Eq. (12) on the performance of SSDA. The recognition
error rates on the unlabeled training data and the test data
are plotted in Figures 4-7. We can see that when « varies
in the range [0.1,1.1], the performance of SSDA does not
change very much and the maximum percentage changes
for the unlabeled training data and the test data are 2.87%
and 2.68% when p = 2, 2.21% and 1.91% when p = 3,
1.51% and 1.15% when p = 4, and 0.93% and 0.72% when
p = 5. So the performance of SSDA is not very sensitive to
o.



Table 3. Recognition error rates (in mean=-std-dev) on AR for different p values. TOP LEFT: p = 2; TOP RIGHT: p = 3; BOTTOM LEFT:

p = 4; BOTTOM RIGHT: p = 5.

Method | Unlabeled error [ Testerror || Method | Unlabeled error Test error
Baseline 0.856540.0119 | 0.851740.0120 || Baseline 0.811040.0135 | 0.8080+0.0144
Eigenface | 0.8645+0.0116 | 0.8584+0.0113 || Eigenface | 0.8202+0.0125 | 0.815540.0122
Fisherface | 0.5259+0.0192 | 0.5188+0.0173 || Fisherface | 0.4771+0.0265 | 0.47044+0.0229
SDA 0.8158+0.0094 | 0.7644+0.0144 || SDA 0.7778+0.0136 | 0.6801+0.0169
SSDA 0.4268+0.0385 | 0.4184+0.0363 || SSDA 0.2820+0.0236 | 0.2849+0.0217

’ Method \ Unlabeled error \ Test error ’ Method \ Unlabeled error \ Test error ‘
Baseline 0.768440.0106 | 0.7695+0.0129 || Baseline 0.7338+0.0130 | 0.7354+0.0136
Eigenface | 0.7768+0.0105 | 0.7769+0.0118 || Eigenface | 0.7424+0.0129 | 0.74304+0.0127
Fisherface | 0.3021+0.0134 | 0.3014+0.0152 || Fisherface | 0.320940.0188 | 0.3250+0.0150
SDA 0.738640.0161 | 0.61054+0.0166 || SDA 0.6941+0.0177 | 0.5179+0.0210
SSDA 0.2287+0.0113 | 0.2246+0.0149 || SSDA 0.1929+0.0142 | 0.1941+0.0158
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Figure 4. Recognition error rates of SSDA on the unlabeled
training data and the test data of AR with p = 2 under varying
« values.
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Figure 6. Recognition error rates of SSDA on the unlabeled
training data and the test data of AR with p = 4 under varying
« values.

5. Conclusion

In this paper, we have proposed a new dimensionality
reduction algorithm called Semi-Supervised Discriminant
Analysis. It can make use of both labeled and unlabeled
data in learning a transformation to achieve dimensional-
ity reduction. The similarity between data points is repre-
sented by a robust path-based similarity measure so that the
global manifold structure of the data can be captured well
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Figure 5. Recognition error rates of SSDA on the unlabeled
training data and the test data of AR with p = 3 under varying
o values.
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Figure 7. Recognition error rates of SSDA on the unlabeled
training data and the test data of AR with p = 5 under varying
« values.

with high robustness. The global manifold structure plays
a crucial role in maximizing the discrimination ability of
LDA when labeled training data are very limited. Exper-
iments performed on two commonly used face databases
show very promising results when compared with other re-
lated methods. In our future research, we will generalize
our method to other dimensionality reduction techniques.
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