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Abstract—Epidemic prediction is an important problem in epidemic control. Poisson regression methods are often adopted in existing
works, mostly with only the (intra-)regional environmental factors considered. As the diffusion of epidemics is affected by not only the
intra-regional factors but also inter-regional and external ones, a unified framework based on Poisson regression with the three types of
factors incorporated is proposed for the prediction. Specifically, we propose a Poisson-regression-based model first with the
intra-regional and inter-regional factors included. The intra-regional factor in a particular time interval is represented by one feature
vector with the regionally environmental and social factors considered. The inter-regional factor is modeled by a diffusion matrix which
describes the possibilities that the epidemics can spread from one region to another, which in turn accounts for the propagating effects
of the infected cases. To learn the structure of the diffusion matrix, we propose two approaches – utilizing some a priori knowledge
(e.g., transportation network) and estimating it from scratch via a sparse structure assumption. The resulting optimization problem of
the maximum a posterior solution is a convex one and can be efficiently solved by the alternating direction method of multipliers
(ADMM). In addition, we incorporate also the external factor, i.e., the imported cases. With one fact that the distribution of the number
of infected cases over a year is (approximately) unimodal for most epidemics and one assumption that the importing rate has a small
variance over the year, we can approximate the effect of the external factor with a parametric function (e.g., a quadratic function) over
time. The resulting optimization problem is still convex and can be also solved by the ADMM algorithm. Empirical evaluations are
conducted based on a real data set which records the 16-days-reported cases in the Yunnan province of China for seven years, from
2005 to 2011. The experimental results demonstrate the effectiveness of our proposed models.

Index Terms—Epidemic Prediction, Poisson Regression, ADMM Algorithm
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1 INTRODUCTION

E ACH outbreak of epidemics may bring much cost in both
lives and dollars, e.g., Severe Acute Respiratory Syndrome

(SARS) [16] and Influenza A virus subtype H1N1 [5]. So epidemic
control attracts much attention of the government in each coun-
try and the World Health Organization. Among many problems
in epidemics control, the epidemic prediction problem, which
forecasts the prevalence of the epidemic in certain regions, is
one of the important ones [20]. Accurate epidemic prediction is
useful in saving lives and reducing unnecessary damage caused
by the epidemic. For example, based on the prediction results,
governments in hard-hit regions can take immediate actions, e.g.,
sterilizing in public places and giving warning to public, to prevent
the outbreak or at least to reduce the consequence caused by the
outbreak. Meanwhile, people can protect themselves from getting
infection by, for example, avoiding to go to public areas and taking
better care of personal hygiene. The epidemic prediction results
can take some forms such as outbreak probabilities, the possible
number of infected cases, and so on. The latter is adopted in this
paper.

Pioneering studies in epidemic modeling and control are
mostly based on meta-populations and using the model-based
simulation approach [3]. Also, to achieve the early warning
objective, Poisson-regression-based methods have been proposed
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for epidemic prediction based on the past reported cases where
environmental factors [1], [17], [20], [21] are commonly consid-
ered. In order to make accurate prediction for epidemics, one key
issue is to identify the factors affecting the epidemic propagation.
Here we classify the factors into three types: intra-regional factor,
inter-regional factor, and external factor. The intra-regional factor
includes all region-specific elements that affect the propagation
of the epidemics within one region, e.g., environmental [1], [17],
[20], [21] and social elements [2]. The environmental elements
can consist of temperature, rainfall, humidity, elevation and so on.
Since the virus or bacterial triggering a disease normally can only
survive under certain environmental conditions, the environmental
elements become prerequisites for epidemic diffusion. The social
elements can be, for example, average income and population size.
A poor region typically has a bad medical condition and is not
capable of controlling infectious diseases well. Moreover, if there
are many people living in a region, then it is obvious that the
chance that this region has infected cases is higher than another
region with a smaller population size. The inter-regional factor
refers to the elements that facilitate the epidemics to spread to
different regions, for example, human mobility [9], [23]. The rapid
development of traffic systems leads to easy and fast traveling
between regions, making the propagation of epidemics through
the traveling of disease-carriers highly possible. The SARS is a
representative example which originated in Guangdong province
of China and then propagated to Southeast Asia and thus the
whole world via disease-carriers who were travelling around. The
external factor denotes the elements which are due to the regions
outside the scope of investigation. One example is the imported
cases. Usually we can only make observations in some targeted
regions and the behavior of the outside regions can only be treated
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as imported cases. Moreover, there are some studies to apply
the biological epidemic models to understand the propagation of
computer viruses, e.g., [24].

Existing works on epidemic prediction mainly focus on the
investigation of the intra-regional factor. For example, Woodruff
et al. [21], Teklehaimanot et al. [20], Abellana et al. [1], and
Nkurunziza et al. [17], respectively, studied the effect of weather
on the diffusion process of Ross River virus epidemics and
malaria. Denoeud et al. [10] used Poisson regression [8] to predict
the pneumonia and influenza mortality based on morbidity data.
Achcar et al. [2] employed Poisson regression to investigate the
effect of human development index and the size of inhabitants,
population and the number of doctors, which corresponds to the
environmental and social elements of the intra-regional factor,
on the disease diffusion. Sharmin and Rayhan [18] used the
negative binomial model, which is an extension of the Poisson
regression model, to predict monthly infected cases for measles.
Recently, the investigation on the effect of human mobility to
epidemics spreading, which belongs to the inter-regional factor,
has attracted much attention, e.g., [9], [23]. However, there is
no work to investigate how to use the inter-regional factor for
epidemic prediction.

To the best of our knowledge, there is also no work to
investigate the combination of the intra-regional and inter-regional
factors. In addition, the study of the effect of the external factor on
the epidemic prediction is lacking in the literature. In this paper,
we aim to fill this gap and study how to integrate the three factors
within one framework based on the Poisson regression model
for epidemic prediction. First we extend Poisson regression to
combine the intra-regional and inter-regional factors. Specifically,
the intra-regional factor is represented by a feature vector that
encodes the environmental and social features. The inter-regional
factor is modeled by a diffusion matrix, which describes the
possibilities that the epidemics spread from one region to another,
to determine the propagating effect of the infected cases at all
regions. Then by summing up the effects of the intra-regional
and inter-regional factors, we can define the parameters of the
Poisson likelihood function corresponding to a region in a certain
time interval. Since the structure of the diffusion matrix is mostly
unknown, we can either utilize some a priori knowledge from other
auxiliary networks (e.g., transportation network) or estimate it
from scratch by assuming that the diffusion network is sparse. The
optimization problem of the resulting model is found to be convex.
In order to deal with the high-dimensional model parameters
and also the constraints for the model parameters, we adopt the
alternating direction method of multipliers (ADMM) [6].

Other than considering only the intra-regional and inter-
regional factors, we add also the external factor by utilizing
one fact that the distribution of the number of infected cases in
different time intervals over a year is (approximately) unimodal for
most epidemics. Based on this fact and one additional assumption
that the importing rate has small variance over a year, we can
approximate the effect of the external factor with a parametric
function (e.g., a quadratic function) over time. The resulting
optimization problem is still convex and hence the ADMM al-
gorithm can be applied. The experiments are conducted on one
malaria dataset which records the 16-days-reported number of
infected cases in 62 counties of the Yunnan province in China.
Experimental results on the epidemic prediction demonstrate the
effectiveness of our proposed models.

The remainder of this paper is organized as follows. In Section

2, we give an overview on Poisson regression. The first model that
combines the intra-regional and inter-regional factors is presented
in Section 3 which will set the stage for the introduction of our
second model that considers all the three factors in Section 4.
In Section 5, we report the experimental results and Section 6
concludes the paper.

2 POISSON REGRESSION WITH ADMM
Poisson regression and its extension (e.g., negative binomial
regression) are natural choices for epidemic prediction, e.g., [2],
[10], [18], since the number of infected cases is essentially an
integer. In this section, we review the basic Poisson regression
model. Moreover, we will discuss how to utilize the ADMM to
solve the resulting optimization problem.

Suppose we are given a training dataset consisting of n pairs
of data point {(xi, yi)}ni=1 where the ith data point xi ∈ Rd lies
in a d-dimensional real space and its label yi ∈ Z is a nonnegative
integer.

Since the outputs here are integer values, it is very natural to
use the Poisson distribution as the likelihood function:

yi|xi ∼ P(µi)
lnµi = αTxi,

where k! is the factorial of an integer k, and P(µ) denotes a Pois-
son distribution with its probability density function formulated as
p(x) = µx exp{−µ}/x!. In order to penalize the complexity of
α, we add a normal prior on it as

α ∼ N (0,
1

λ
I),

where N (m,Σ) denotes a multivariate (or univariate) normal
distribution with mean as m and covariance matrix (or variance)
as Σ, 0 denotes a zero vector or matrix with appropriate size,
and I denotes an identity matrix with the size depending on the
context. Moreover, we suppose there is some constraint for the
model parameters α, i.e., α ∈ C where C denotes a constraint set.

The maximum a posterior (MAP) solution seeks to solve the
following optimization problem as

min
α∈C

n∑
i=1

(
exp{αTxi} − yiαTxi

)
+
λ

2
‖α‖22, (1)

where ‖ · ‖2 denotes the 2-norm of a vector. The Newton-Raphson
method, which is frequently used to solve the objective function
of the Poisson regression model, has the scalability problem with
respect to the high-dimensional data since it needs to compute the
inverse of the Hessian matrix and cannot handle the constraints im-
posed on the model parameters. To deal with the high-dimensional
data and also the constraints, we adopt the ADMM algorithm to
solve problem (1). By utilizing ADMM, the model parameters can
be decoupled from the constraints by creating new variables as
their copies and the resulting unconstrained problem can enable
the use of the conventional first-order gradient method such as
the conjugate gradient method. Specifically, we introduce a new
variable β as a copy of the model parameter α as reflected in
constraints that α = β and β ∈ C. The reformulated objective
function is defined as

min
α,β

n∑
i=1

(
exp{αTxi} − yiαTxi

)
+
λ

2
‖α‖22,

s.t. α = β, β ∈ C. (2)
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We define the augmented Lagrangian as

Lρ(α,β,θ) =
n∑
i=1

(
exp{αTxi} − yiαTxi

)
+
λ

2
‖α‖22

+ θT (α− β) + ρ

2
‖α− β‖22,

where θ acts as Lagrange multipliers and ρ is a penalty parameter.
Based on the above notations, the ADMM algorithm is described
in Algorithm 1. According to [12], its convergence rate is at least
O(1/k) with k as the number of iterations. Moreover, the use of
the ADMM algorithm can enable the development of distributed
algorithms as hinted in step 6 of Algorithm 1, which however
goes beyond the focus of this paper and will be investigated in our
future study.

Algorithm 1 The ADMM Algorithm for Problem (2)
1: Set ρ to be 10;
2: Initialize θ(0) and β(0);
3: l := 0;
4: while not converged do
5: α(l+1) := argminα Lρ(α,β

(l),θ(l));
6: β(l+1) := argminβ∈C Lρ(α

(l+1),β,θ(l));
7: θ(l+1) := θ(l) + ρ(α(l+1) − β(l+1));
8: l := l + 1;
9: end while

We need to solve the steps 5 and 6 in the ADMM algorithm.
For step 5, the optimization problem is formulated as

min
α

h(α) =
n∑
i=1

(
exp{αTxi} − yiαTxi

)
+
λ

2
‖α‖22

+ (θ(l))Tα+
ρ

2
‖α− β(l)‖22.

This is an unconstrained problem with no analytical solution due
to the existent of the exponential function and we use some
gradient method such as the conjugate gradient method to solve it.
The gradient with respect to α can be computed as

∂h(α)

∂α
=

n∑
i=1

(
exp{αTxi} − yi

)
xi + λα+ θ(l)

+ρ(α− β(l)).

Step 6 solves an optimization problem formulated as

min
β

ρ

2
‖β −α(l+1)‖22 − (θ(l))Tβ

s.t. β ∈ C.
The objective function is a quadratic function with respect to β. If
the constraint is convex with a simple structure, this problem will
have an analytical solution. For example, if each element in β is
only required to be nonnegative, the optimal β can be computed
as

β = max

(
0,α(l+1) +

1

ρ
θ(l)

)
,

where max(·, ·) computes the maximum of the two input argu-
ments in the elementwise manner.

In existing works on epidemic prediction such as [2], [10],
[18], xi represents a feature vector encoding some intra-regional
elements and yi is the corresponding number of infected cases. In
the following two sections, we will show how to extend the basic
Poisson regression model to take the inter-regional and external
factors into consideration.

3 COMBINING INTRA-REGIONAL AND INTER-
REGIONAL FACTORS

Suppose there are n regions with vi denoting the ith region. Each
year is divided into time intervals with fixed length (e.g., two
weeks). Usually we focus on epidemic prediction year by year
and hence without the loss of generality data are assumed to be
sorted in years. Our observations, denoted by a set of yijk, are
the number of persons who got infected at vj during the kth time
interval of the ith year. Usually the observations are incomplete in
one year and so the effective number of time intervals, i.e., those
with observations, for the ith year denoted by li may be different
in different years. Moreover, a vector xijk encodes the features to
represent the intra-regional factor of vj in the kth time interval of
the ith year.

We use Poisson distribution to model the likelihood function
for yijk as

yijk ∼ P(µijk) (3)

lnµijk = αTxijk +
∑
s∈cijk

wsj ln y
i
s(k−1) (4)

where cijk = {s| yis(k−1) > 0} denotes the set of regions with
infection cases reported in the (k − 1)th interval of the ith year.
According to Eq. (4), lnµijk consists of two parts: the linear
function of the intra-regional factor parameterized by α which
is identical to the basic model introduced in the previous section
and the contribution of the infected cases of all regions at the
last time interval parameterized by wsj . Here the inter-region
factor is described by the matrix W whose (s, j)th element is
wsj and the interaction between vi and vj is reflected in wij and
wji. Specifically, all regions form an epidemic network and wsj
represents the non-negative possibility of the disease propagating
from vs to vj . In particular, wjj can be non-zero and be viewed
as an indicator for the unrecovered rate from the perspective of
the widely used susceptible-infected-recovered (SIR) model [7] in
epidemics. Here the matrix W can be viewed as a diffusion matrix
which describes the diffusion possibility between each pair of the
n regions. In Eq. (4), we make a first-order Markov assumption
that the parameter µijk at current time interval k depends on
the number of infected cases yis(k−1) of all regions at previous
time interval k − 1. The generalization to high-order Markov
assumption is not difficult and will be investigated in our future
study.

By defining ln 0 = 0,1 we can unify the two cases where
yis(k−1) is equal to zero or not and simplify the second term in the
right-hand-side of Eq. (4) as∑

s∈cijk

wsj ln y
i
s(k−1) =

n∑
s=1

wsj ln y
i
s(k−1).

To penalize the complexity of α, we place a normal distribu-
tion as a prior on it as

α ∼ N (0,
1

λ1
I). (5)

W contains n2 entries. If we directly learn a dense W, the
model complexity may be high, leading to the overfitting problem,
i.e., there may not be enough training data for accurate estimation
of W. To control the complexity of W, two approaches are

1. This definition only works in the formulation of lnµijk .
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proposed to learn the structure of W; the first approach is to
use some a priori information (e.g., transportation network) while
the second one directly learns from data based on a sparsity
assumption without using a priori information. We will discuss
those two approaches respectively in the following two sections.

3.1 Learning W based on A Priori Information
Suppose from available resources like Google map, one can obtain
some a priori information, e.g., transportation network A where
the (i, j)th element of A, denoted by aij , equals 1 if two regions
vi and vj are connected via some trafficway and 0 otherwise.
Usually the transportation network is very sparse and for example
the sparsity of the transportation network used in our experiments
is about 90%. Then by assuming that the structure of W is similar
to that of the transportation network, we can define the structure
of W as

wij = 0 if aij = 0

wij ≥ 0 if aij > 0

We also assume that vi is self-connected and hence aii = 1 which
makes wii ≥ 0 and indicates the existent of the self-infection
within one region. Note that the structure of W is not identical to
that of A since aij > 0 can only imply wij ≥ 0 but not wij > 0.
Due to the non-negativeness of {wij}, we place a half-normal
distribution on nonzero elements of W as

wij ∼ HN (0,
1

λ2
) if aij > 0. (6)

The MAP solution leads to the following optimization prob-
lem:

min
α,W∈SW

m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk lnµijk) +
λ1
2
‖α‖22

+
λ2
2

∑
aij>0

w2
ij , (7)

where SW = {W|wij = 0 if aij = 0; otherwise wij ≥ 0} and
µijk is defined in Eq. (4).

It is easy to show that problem (7) is convex since lnµijk is
a linear function of α and W. Since there is one constraint for
W and the number of parameters is not small, we use the ADMM
algorithm to solve problem (7). By introducing a new variable U
as a copy of W, we can reformulate problem (7) as

min
α,W,U

m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk lnµijk) +
λ1
2
‖α‖22

+
λ2
2

∑
aij>0

w2
ij

s.t. U = W,U ∈ SW . (8)

Since there is no constraint placed on α, we need not create a
copy for it. In order to use the ADMM algorithm, we define the
augmented Lagrangian as

Lρ(α,W,U,Θ)

=
m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk lnµijk) +
λ1
2
‖α‖22 +

λ2
2

∑
aij>0

w2
ij

+ tr
(
ΘT (U−W)

)
+
ρ

2
‖U−W‖2F ,

where tr(·) denotes the trace of a square matrix and ‖·‖F denotes
the Frobenius norm of a matrix. To use Algorithm 1, we optimize
α and W together as in step 4 and U in step 5. Specifically, we
need to solve two subproblems: minα,W Lρ(α,W,U,Θ) and
minU∈SW Lρ(α,W,U,Θ). Here for notational simplicity, we
omit the superscripts which indicate the number of iterations. In
the following we discuss how to solve those two problems.

To solve minα,W Lρ(α,W,U,Θ) which is an uncon-
strained problem, we use the conjugate gradient method with the
gradients with respect to α and the (r, s)th element wrs of W
computed as

∂l

∂α
=

m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk)xijk + λ1α (9)

∂l

∂wrs
=

m∑
i=1

li∑
k=2

(µisk − yisk) ln yir(k−1) + λ2wrs − θrs

+ ρ(wrs − urs),

where l denotes the objective function, µijk is computed according
to Eq. (4), and uij and θij are the (i, j)th elements of U and Θ
respectively.

The second subproblem can be expressed as

min
U

tr
(
ΘTU

)
+
ρ

2
‖U−W‖2F s.t. U ∈ SW . (10)

This problem has an analytical solution as

uij =

{
0 if aij = 0

max
(
0, wij − 1

ρθij
)

otherwise
. (11)

Those two subproblems are iteratively solved until some ter-
mination criteria is satisfied. In our experiments, we find that the
problem normally converges in less than 10 iterations and so the
convergence is fast.

3.2 Learning W based on Sparsity Assumption

In this section, we discuss how to learn W from scratch where no
information is available about the structure of W.

We assume that each region is reachable from any other
regions and so each element in W can be non-negative. To restrict
the complexity of W and to discover the hot spots for epidemic
prediction, we assume W is sparse and hence place a Laplace
prior, which corresponds to the l1 regularization, on non-negative
W as

wij ∼ L(0,
1

λ2
), (12)

where wij is the (i, j)th element of W, | · | denotes the absolute
value of a scalar, and L(a, b) denotes a Laplace distribution with
its probability density function as p(x) = 1

b exp{−
1
b |x − a|}.

Then we can formulate the objective function of the MAP solution
as

min
α,W≥0

m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk lnµijk) +
λ1
2
‖α‖22

+λ2
∑
i,j

wij . (13)

Obviously problem (13) is a convex optimization problem with
respect to α and W and we again use the ADMM algorithm to
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solve it. Similar to the previous section, we reformulate problem
(13) as

min
α,W

m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk lnµijk) +
λ1
2
‖α‖22 + λ2

∑
i,j

wij

s.t.U = W,U ≥ 0. (14)

The augmented Lagrangian is defined as

Lρ(α,W,U,Θ)

=
m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk lnµijk) +
λ1
2
‖α‖22 + λ2

∑
i,j

wij

+ tr
(
ΘT (U−W)

)
+
ρ

2
‖U−W‖2F .

The first subproblem with respect to α and W is similar to that
of the problem in the previous section with the difference lying in
the regularizor of W. The gradient method is used to solve it and
the gradient with respect to α is the same as Eq. (9). The gradient
with respect to wrs for r, s = 1, . . . , n can be computed as

∂l

∂wrs
=

m∑
i=1

li∑
k=2

(µisk − yisk) ln yir(k−1) + λ2 − θrs

+ ρ(wrs − urs).

The objective function of the second subproblem which minimizes
Lρ(α,W,U,Θ) with respect to U can be simplified as

min
U

tr
(
ΘTU

)
+
ρ

2
‖U−W‖2F

s.t. U ≥ 0, (15)

which has an analytical solution as

uij = max

(
0, wij −

1

ρ
θij

)
. (16)

4 INCORPORATING EXTERNAL FACTOR

In the previous section, we study how to combine the intra-
regional and inter-regional factors together. In this section, we
further investigate the combination of all three factors together
based on the preceding model.

Here the external factor mainly denotes the imported cases
from the regions outside the n regions under investigation. The
main challenge here is that we have little information about the
external factor. It is well known that the epidemic curves of
most epidemics, which record the infected cases in one region
for successive time intervals in one year, are (approximately)
unimodal distributions. By assuming that the importing rate is
fixed or the variance on the importing rates over time is very small,
the curve of the imported cases over time can also be viewed as
an (approximately) unimodal distribution. We propose to use a
parametric function of the time information to reflect this property.
One choice for the parametric function is a quadratic function
since a quadratic function with a negative leading coefficient is
unimodal and it is very simple and intuitive. Specifically, the
parameter in the Poisson likelihood µijk is defined as

lnµijk =αTxijk +
∑
s∈cijk

wsj ln y
i
s(k−1) + ((β(2))T ẑij)k

2

+ ((β(1))T ẑij)k + (β(0))T ẑij ,

or equivalently

lnµijk = αTxijk +
∑
s∈cijk

wsj ln y
i
s(k−1) + β

T zijk, (17)

where ẑij record some features (e.g., the elevation, the income
level, and the population), which belongs to the intra-regional
factor, and is assumed to affect disease importing for the jth
region in the ith year, β = ((β(2))T , (β(1))T , (β(0))T )T , and
zijk = (k2(ẑij)

T , k(ẑij)
T , (ẑij)

T )T .
In order to guarantee that the distribution of the external

factor has one peak at one of the time intervals, it is better to
add constraints that (β(2))T ẑij is negative for all i and j and
(β(1))T ẑij is positive for all i and j as a quadratic function
with a negative leading coefficient and a positive linear coefficient
has only one peak at some positive scalar. However, by adding
those constraints, the optimization procedure to solve the MAP
solution will become very complicated. In the following, we do
not consider the incorporation of those constraints but instead use
those constraints as a criterion to test whether our assumption
matches the real-world data used in the experiments.

In the following two sections, similar to the previous section
we respectively discuss two approaches to combine three factors
together according to the situations whether some a priori infor-
mation on the network structure W is available or not.

4.1 Learning W based on A Priori Information

In this section, suppose we have a priori information, e.g., the
transportation network A, on the structure of W, which corre-
sponds to the situation in Section 3.1.

We also assign normal priors on α, wij and β as

α ∼ N (0,
1

λ1
I)

wij ∼ HN (0,
1

λ2
) if aij > 0

β ∼ N (0,
1

λ3
I).

By computing the MAP solution, we get the following optimiza-
tion problem as

min
W,α,β

m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk lnµijk) +
λ1
2
‖α‖22 +

λ3
2
‖β‖22

+
λ2
2

∑
aij>0

w2
ij

s.t.W ∈ SW , (18)

where µijk is defined in Eq. (17). It is easy to show that problem
(18) is convex since lnµijk is a linear function of the model
parameters, and hence we can adopt the ADMM algorithm to solve
the problem. By introducing a new variable U, we can reformulate
problem (18) as

min
W,U,α,β

m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk lnµijk) +
λ1
2
‖α‖22

+
λ3
2
‖β‖22 +

λ2
2

∑
aij>0

w2
ij

s.t.U = W,U ∈ SW . (19)
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The augmented Lagrangian is defined as

Lρ(α,β,W,U,Θ)

=
m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk lnµijk) +
λ1
2
‖α‖22 +

λ2
2

∑
aij>0

w2
ij

+
λ3
2
‖β‖22 + tr

(
ΘT (U−W)

)
+
ρ

2
‖U−W‖2F .

For the subproblem in step 4 of the ADMM algorithm, we need
to minimize Lρ(α,β,W,U,Θ) with respect to α, β and W by
using some gradient method with the gradients computed as

∂l

∂α
=

m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk)xijk + λ1α

∂l

∂wrs
=

m∑
i=1

li∑
k=2

(µisk − yisk) ln yir(k−1) + λ2wrs − θrs

+ ρ(wrs − urs)

∂l

∂β
=

m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk)zijk + λ3β.

The subproblem in step 5 solves the same problem as problem
(10) with the solution as in Eq. (11).

4.2 Learning W based on Sparsity Assumption

When there is no a priori information, we will learn W from data
directly. Here we assume that W is sparse and place a Laplace
prior on non-negative W as

wij ∼ L(0,
1

λ2
), (20)

where wij is the (i, j)th element of W. The objective function of
the MAP solution is formulated as

min
W,α,β

m∑
i=1

n∑
j=1

li∑
k=2

(µijk − yijk lnµijk) +
λ1
2
‖α‖22

+λ2
∑
i,j

wij +
λ3
2
‖β‖22

s.t. W ≥ 0. (21)

We still use the ADMM method to solve problem (21) with the
difference lying in the regularization term on W compared to
problem (18), leading to a different gradient with respect to W in
the first subproblem of the ADMM algorithm as

∂l

∂wrs
=

m∑
i=1

li∑
k=2

(µisk − yisk) ln yir(k−1) + λ2 − θrs

+ ρ(wrs − urs).

The gradients with respect to α and β remain identical to those
of the problem in the previous section. The second subproblem is
identical to problem (15) with the solution as in Eq. (16).

5 EXPERIMENTS

In this section, we conduct empirical experiments to test the
performance of our proposed methods.

5.1 Data

To our knowledge, there exists no public epidemic data. We use
a malaria dataset provided by the National Institute of Parasitic
Diseases in the Chinese Center for Disease Control and Preven-
tion. This dataset was collected from the endemic areas in Yunnan
province of China and containing 16-days-reported malaria cases
from 62 counties in Yunnan province from years 2005 to 2011. So
the length of each time interval is 16 (in days) and the number of
years under investigation m is 7. Due to the time-consuming data
collection process, the available data are usually incomplete. Table
1 depicts the number of the time intervals found in the dataset.
We can see that the data corresponding to 13 times intervals are
missing for year 2006. With each region is defined as one of the
62 counties in Yunnan province, the number of regions n for our
experiments is equal to 62.

TABLE 1
The number of the time intervals with reported cases for different years

in the malaria dataset.

Year The Number of Time Intervals li
2005 23
2006 10
2007 23
2008 23
2009 23
2010 23
2011 23

We have manually collected the environmental information2

corresponding to each county in Yunnan province during the
period of years 2005-2011, including the population denoted by
pj of region vj , the temperature denoted by tijk during the kth
time interval of the ith year at region vj , the rainfall denoted
by rijk during the kth time interval of the ith year at vj ,
and the elevation denoted by ej of region vj . Then we define
the feature representation for the intra-regional factor xijk as
xijk = (ln pj , ln t

i
jk, t

i
jk, ln r

i
jk, r

i
jk, ln ej)

T .
The Yunnan province is close to the boundary between China

and Myanmar. The medical condition for malaria treatment in
Myanmar is not very good, resulting in many infected cases.
Many business activities between China and Myanmar happening
in Yunnan province leads to many imported cases where the
subjects got infected in Myanmar before accessing the Yunnan
province. In general, the imported case has been considered to
be one of the most important factors for malaria diffusion in
Yunnan province, making the investigation of the external factor
crucial. We define ẑij , the feature vector for the external factor,
as ẑij = (pj , ln pj , ej , ln ej , bj)

T where bj is a binary feature
to indicate whether the corresponding region vj has a direct
connection to the boundary or not.

5.2 Experimental Settings

We abbreviate the classical Poisson regression model introduced
in Section 2 to ‘PR’. We name the model that combines the
intra-regional and inter-regional factors with priori structural in-
formation of the diffusion matrix, which is depicted in Section

2. The MODIS data for temperature can be found at http:
//iridl.ldeo.columbia.edu/expert/SOURCES/.USGS/.LandDAAC/.MODIS/
.1km/.8day/.version 005/.Aqua/.CN/.Day/ and the TRMM data for rainfall is
from http://iridl.ldeo.columbia.edu/expert/SOURCES/.NASA/.GES-DAAC/
.TRMM L3/.TRMM 3B42/.v6/.daily/.precipitation/.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

3.1, as the PR-2-p model and that with the sparsity assumption
in Section 3.2 as the PR-2-s model. Their counterparts with all
three factors combined are called the PR-3-p and PR-3-s models
respectively. Moreover, we also compare with the semi-supervised
Gaussian process ordinary regression (SSGPOR) [19], which uses
all the information including the transportation network to learn
the kernel matrix.

In order to test the performance of all the proposed models, we
adopt the notation denoted by (i, j) which indicates an experiment
setting using the malaria cases from the first time interval of the
first year (i.e., year 2005) to the (j − 1)th time interval of the ith
year as the training data to predict the number of infected cases in
the jth time interval of the ith year. In order to obtain the inter-
regional factor, we need the training data to contain at least two
preceding time intervals, which implies j − 1 ≥ 2 or equivalently
j ≥ 3. Moreover, in order to make sure that the training dataset
contains sufficient data for accurate estimation, we further require
that i ≥ 4, i.e., there should be at least three years of data for
training. As a result, there are four sets of experiments, including
the settings (4, j), (5, j), (6, j), and (7, j) with the range of j
between 3 and 23.

We use the Bayesian regularization method in [11] for the set-
ting of the regularization parameters (i.e., λ1 and λ2) in all models.
The core idea of [11] is to first place a Gamma prior on each of the
regularization parameters and then integrate out the regularization
parameters. By using the majorization-minimization (MM) algo-
rithm [14], [15], [22], the objective function in each iteration is
similar to the original problem with the regularization parameters
inversely depending on the solution in the previous iteration.
One advantage of the Bayesian regularization method over the
traditional cross-validation-style methods is that we only need
to optimize the problem once instead of solving it for multiple
times which can grow exponentially in terms of the number
of regularization parameters. Hence the Bayesian regularization
method is efficient especially for models with multiple regulariza-
tion parameters.

5.3 Evaluation Measure
Three performance measures are used in our experiments:

• Root mean square error (RMSE): RMSE(y, ŷ) =√
1
n

∑n
i=1(yi − ŷi)2, where y denotes the ground truth

on the number of infected cases for all n regions under
investigation in a particular time interval, ŷ denotes the
estimation of the number of the infected cases for all n
regions in investigation in the same time interval, yi and ŷi
correspond to the ith elements of y and ŷ, representing the
ground truth and estimation of the number of the infected
cases in the ith region respectively.

• Mean absolute error (MAE): MAE(y, ŷ) =
1
n

∑n
i=1 |yi − ŷi|, where | · | denotes the absolute

value of a scalar.
• Maximum absolute error (ME): ME(y, ŷ) = maxi |yi −

ŷi|.
RMSE and MAE measure the prediction error on average but

under different metric spaces (i.e., spaces with `2 and `1 distance).
Different from those two measures, ME measures the prediction
error for the worst case by reporting the maximum of the absolute
error among all n regions. Those three measures evaluate different
aspects of a learning model and we will use all the three measures
to fully analyze each learning model.

5.4 Experimental Results

The results for the four experimental settings are depicted in
Figures 1–8. For clear presentation, the comparison results for
the PR, SSGPOR, PR-2-p and PR-3-p models with a priori
information on the structure of the diffusion matrix assumed are
shown in Figures 1–4 and those for the PR, PR-2-s, and PR-
3-s models without a priori information in Figures 5–8. Since
the SSGPOR model performs comparably with the PR model as
shown in Figures 1–4, leading to the inferiority to the PR-2-s and
PR-3-s models, we do not plot the results of the SSGPOR model
in Figures 5–8 for clear illustration. From the results, we can see
at the beginning of the year (i.e., intervals 3-5), our proposed
models have comparable performance with the PR model based
on some measure (e.g., the ME measure). One reason is that the
epidemic has not outbroken due to unsuitable weather condition
(e.g., low temperature) and the number of infected cases is very
small, making the consideration of the inter-regional and external
factors not very important. This phenomenon also exists near the
end of each year (i.e., intervals 20-23), another inactive period
for the epidemic. During the outbreak (i.e., intervals 6-19), we
can see that the performance of the PR-2-p and PR-2-s models
is better than that of the PR model under the four settings,
which demonstrates that the incorporation of the inter-regional
factor is useful for epidemic prediction. By adding the external
factor, the PR-3-p and PR-3-s models give further enhancement in
performance compared to their counterparts, i.e., the PR-2-p and
PR-2-s models. For example, as shown in Figure 1(c), the ME
of the PR model is 21 and the ME’s for our PR-2-p and PR-3-p
models are 16 and 12, with the error reduction ratio being 23.80%
and 42.85% respectively. The significant error reduction can also
be observed in Figures 2(c), 5(c), 6(c) and so on.

We also report the mean and the standard deviation of the
six methods over each year in Tables 2–4. Since the number of
infected cases changes a lot in different time intervals of a year, to
make the measure in different time intervals comparable, we use
the relative RMSE (rRMSE), relative MAE (rMAE), and relative
ME (rME), which equal the ratio of the corresponding measure
(RMSE, MAE, or ME) over the average of the true number of
infected cases during a time interval, as the performance measures.
Specifically, to measure the difference between the ground truth y
on the number of infected cases for all n regions in a time interval
and the corresponding estimation ŷ, the rRMSE, rMAE, and rME
are defined as

rRMSE(y, ŷ) =
RMSE(y, ŷ)

avg(y)

rMAE(y, ŷ) =
MAE(y, ŷ)

avg(y)

rME(y, ŷ) =
ME(y, ŷ)

avg(y)
,

where avg(y) gives the average of the elements in y. By conduct-
ing significance t-test with 95% confidence on those results, we
find that the SSGPOR and PR methods are comparable, the PR-
2-p and PR-2-s methods, which are comparable in performance,
perform significantly better than the SSGPOR and PR methods,
and the PR-3-p and PR-3-s methods are among the best methods.

To compare the two strategies to learn the diffusion matrix
incorporated in the inter-regional factor, i.e., pre-setting the struc-
ture of W based on the given transportation network or learning
W from scratch with the sparsity assumption, Table 5 records the
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Fig. 1. Performance comparison (in terms of RMSE, MAE, and ME) between the SSGPOR, PR, PR-2-p, and PR-3-p models under settings (4, j)
where 3 ≤ j ≤ 23.
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(b) MAE for setting (5, j)
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Fig. 2. Performance comparison (in terms of RMSE, MAE, and ME) between the SSGPOR, PR, PR-2-p, and PR-3-p models under settings (5, j)
where 3 ≤ j ≤ 23.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5

1

1.5

2

2.5

Interval Index

R
M

SE

 

 
PR
PR−2−p
PR−3−p
SSGPOR

(a) RMSE for setting (6, j)
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(b) MAE for setting (6, j)
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Fig. 3. Performance comparison (in terms of RMSE, MAE, and ME) between the SSGPOR, PR, PR-2-p, and PR-3-p models under settings (6, j)
where 3 ≤ j ≤ 23.
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(a) RMSE for setting (7, j)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Interval Index

M
A

E

 

 
PR
PR−2−p
PR−3−p
SSGPOR

(b) MAE for setting (7, j)
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Fig. 4. Performance comparison (in terms of RMSE, MAE, and ME) between the SSGPOR, PR, PR-2-p, and PR-3-p models under settings (7, j)
where 3 ≤ j ≤ 23.

win/tie/loss results in terms of different measures by comparing
the PR-2-p and PR-2-s models as well as the PR-3-p and PR-3-s
models respectively. Based on the RMSE measure, we can see
those two strategies perform comparably due to the comparable

win and loss counts. In terms of the MAE measure, the second
strategy, which learns the diffusion matrix from scratch based
on the sparsity assumption, performs better than the first one.
However, the situation is different for the ME measure in which
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(b) MAE for setting (4, j)
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Fig. 5. Performance comparison (in terms of RMSE, MAE, and ME) between the PR, PR-2-s, and PR-3-s models under settings (4, j) where
3 ≤ j ≤ 23.
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Fig. 6. Performance comparison (in terms of RMSE, MAE, and ME) between the PR, PR-2-s, and PR-3-s models under settings (5, j) where
3 ≤ j ≤ 23.
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Fig. 7. Performance comparison (in terms of RMSE, MAE, and ME) between the PR, PR-2-s, and PR-3-s models under settings (6, j) where
3 ≤ j ≤ 23.
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Fig. 8. Performance comparison (in terms of RMSE, MAE, and ME) between the PR, PR-2-s, and PR-3-s models under settings (7, j) where
3 ≤ j ≤ 23.

the first strategy has slightly better performance. In summary,
according to the performance on the three measures, those two
strategies perform comparably and each strategy has its own favor.

That is, the first strategy favors the ME measure while the second
one is better based on the MAE measure.

One reason that using a priori information (i.e., the transporta-
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TABLE 2
Comparison of the rRMSE among the six methods for years 4 to 7. The
first line for each method records the mean of the rRMSE over 21 time

intervals in a year and the second one is for the standard deviation.

Method 4th Year 5th Year 6th Year 7th Year
PR 2.1332 2.3045 2.6821 3.6210

0.2883 0.2314 0.3199 0.3719
PR-2-p 1.8899 1.8758 2.1863 2.9170

0.1825 0.2236 0.2215 0.2749
PR-2-s 1.8625 1.8971 2.1962 3.0596

0.1576 0.2656 0.2730 0.2741
PR-3-p 1.5245 1.5391 1.8867 2.8081

0.1851 0.1988 0.2717 0.1677
PR-3-s 1.5319 1.4829 1.8057 2.8256

0.1831 0.1107 0.2203 0.1591
SSGPOR 2.2571 2.4279 2.9460 3.8621

0.3923 0.3726 1.0730 0.3813

TABLE 3
Comparison of the rMAE among the six methods for years 4 to 7. The
first line for each method records the mean of the rMAE over 21 time
intervals in a year and the second one is for the standard deviation.

Method 4th Year 5th Year 6th Year 7th Year
PR 1.4520 1.4322 1.7589 2.0029

0.3302 0.3502 0.3232 0.4021
PR-2-p 1.0635 0.9497 1.0051 1.0902

0.2412 0.2043 0.1443 0.2279
PR-2-s 1.0511 1.0367 1.0932 1.2505

0.2871 0.2087 0.1325 0.2698
PR-3-p 0.8024 0.7998 0.7956 0.7057

0.1056 0.1627 0.1435 0.1789
PR-3-s 0.7997 0.8202 0.8476 0.8509

0.1258 0.1401 0.1681 0.2014
SSGPOR 1.5419 1.5027 1.8813 2.1783

0.3776 0.4695 0.3329 0.4905

TABLE 4
Comparison of the rME among the six methods for years 4 to 7. The
first line for each method records the mean of the rME over 21 time
intervals in a year and the second one is for the standard deviation.

Method 4th Year 5th Year 6th Year 7th Year
PR 9.5447 9.1064 10.2107 14.4832

0.7236 0.8212 1.5181 1.5806
PR-2-p 7.1757 7.4974 9.7589 11.4743

0.8959 0.8520 0.7792 1.6310
PR-2-s 6.9698 7.3224 9.3292 11.7802

0.7690 0.7961 0.6377 1.2723
PR-3-p 5.7640 5.5334 7.3502 9.2735

1.2970 0.8964 0.9382 1.7077
PR-3-s 5.8707 4.6468 7.2367 9.4219

1.1477 0.8381 0.7297 1.3784
SSGPOR 12.5642 11.5655 12.0074 16.7220

2.2644 1.1325 2.9733 3.9954

tion network) cannot bring performance improvement is that the
priori information may be inaccurate or incomplete. The trans-
portation information provided by the Google map may not be up-
to-date and the transportation network, which is manually recorded
by ourselves from the Google map, may contain some noise, e.g.,
missing a connection between two regions or wrongly adding
a nonexistent connection. Another possible reason is that the
transportation network only gives the direct connection between
a few pairs of regions but the epidemic can propagate between

two regions, which have no direct connection in the transportation
network, via some intermediate regions through the traveling of
disease-carriers, which may limit the expressive power of the
proposed models. In our future studies, we will try other ways
to design the structure of W based on the transportation network
A.

Moreover, to see the functional shape of the external factor, we
compute (β(2))T ẑij and (β(1))T ẑij for i ≥ 4 and 3 ≤ j ≤ 23.
We find that (β(2))T ẑij’s are all negative and (β(1))T ẑij’s all
positive, which implies that the peak value takes place around
some time interval. So without placing constraints on all β(2)’s
and β(1)’s, we can learn the expected functional form, which
verifies that the distribution of the external factor matches our
assumption.

5.5 Comparison between Diffusion Matrices

We are also interested in the comparison of the diffusion matrices
learned by different models. We plot the adjacency matrix of
the transportation network obtained from Google map and the
diffusion matrices learned by our four models, which are trained
on the whole dataset, in Figure 9. In all the subfigures, a cell with a
brighter color implies that the corresponding weight is larger. The
transportation network with 62 nodes has 394 edges (including
self-loop), implying the 89.75% ((622 − 394)/622 × 100%)
sparsity. From Table 6, we can see the diffusion matrices learned
by the PR-2-p and PR-3-p models have higher sparsity (i.e.,
90.14% and 92.04% respectively) than that of the transportation
network, which implies that some edges in the transportation
network have zero weights in the learned diffusion matrices and
hence the structures of the transportation network and the diffusion
matrices are similar but not exactly identical. Table 6 records the
proportion of the elements at different levels (i.e., equal to 0,
smaller than 10−5, 10−4, 10−3, 10−2 and 10−1) in the diffusion
matrices learned by different models. It shows that the diffusion
matrices learned from the PR-2-s and PR-3-s models have lower
sparsity (i.e., 43.47% and 55.65%) corresponding to the proportion
of the elements being exactly 0. Diffusion matrices with lower
sparsity can have higher expressive power and this may be one
reason why the PR-2-s and PR-3-s models are superior to the
PR-2-p and PR-3-p models under some measure as shown in
the previous section. Moreover, we find that most elements in
the diffusion matrices learned by the PR-2-s and PR-3-s models
are not very large and the proportion of elements taking large
values is smaller than that in the diffusion matrices learned by the
PR-2-p and PR-3-p models at some levels (e.g., 10−3, 10−2 and
10−1). This can be verified based on Figure 9 where the figures
corresponding to the PR-2-p and PR-3-p models have more cells
with bright colors than those of the PR-2-s and PR-3-s models.
This indicates that the complexity of the learned diffusion matrices
in terms of the l1 or the Frobenius norms by the PR-2-s and
PR-3-s models is not very high even though their sparsity, which
corresponding to the level 0 where the elements are exactly zero,
is higher.

We compare the values of the corresponding elements in
different diffusion matrices learned by the PR-2-p and PR-3-p
models as well as the comparison between the PR-2-s and PR-3-s
models respectively in Table 7. From Table 7, we can see that
the models utilizing the external factor (i.e., the PR-3-p and
PR-3-s models) are likely to have elements of smaller value in
W than their counterparts (i.e., the PR-2-p and PR-2-s models)
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TABLE 5
Performance comparison between different strategies to learn the diffusion matrix W. The three tables in the first row record the win/tie/loss

results between the PR-2-p and the PR-2-s models in terms of the RMSE, MAE, and ME respectively. The three tables in the second row record
the win/tie/loss results between the PR-3-p and the PR-3-s models in terms of the RMSE, MAE, and ME respectively.

RMSE
win tie loss

Year 4 13 1 7
Year 5 9 2 10
Year 6 11 3 7
Year 7 5 2 14
Sum 38 8 38

MAE
win tie loss

Year 4 11 3 7
Year 5 4 2 15
Year 6 5 4 12
Year 7 5 2 14
Sum 25 11 48

ME
win tie loss

Year 4 6 13 2
Year 5 3 18 0
Year 6 4 16 1
Year 7 2 16 3
Sum 15 63 6

RMSE
win tie loss

Year 4 10 2 9
Year 5 12 2 7
Year 6 13 1 7
Year 7 3 7 11
Sum 38 12 34

MAE
win tie loss

Year 4 10 1 10
Year 5 9 4 8
Year 6 5 4 12
Year 7 3 10 8
Sum 27 19 38

ME
win tie loss

Year 4 5 11 5
Year 5 8 13 0
Year 6 8 10 3
Year 7 4 12 5
Sum 25 46 13
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Fig. 9. The given transportation network and the diffusion matrices learned by different models.

without utilizing the external factor. This observation verifies the
effectiveness of the modeling of the external factor to some extent.

We also compare the structure of the diffusion matrices
learned based on the sparsity assumption with that of the given
transportation network. Specifically, we count the number of the
corresponding elements in the diffusion matrix and the transporta-
tion network where both weight values are greater than different
thresholds. The results are shown in Table 8. The number of
mutual non-zero elements is not very small for the PR-2-s and
PR-3-s models, which to some extent verifies the rationality of

the diffusion matrices learned by both two models. Moreover, the
number of the mutual elements with large values is not very large,
which may suggest that the structure of the given transportation
network contains some redundancy.

5.6 Convergence
We conduct experiments to demonstrate the ADMM method is a
good choice for the proposed models.

The optimization methods we compared with are the ISTA
method [4], a first-order gradient method, and the FISTA method
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TABLE 6
The proportion of the elements at different levels in the diffusion

matrices learned by different models.

Level PR-2-p PR-2-s PR-3-p PR-3-s
= 0 90.14% 43.47% 92.04% 55.65%
< 10−5 92.20% 57.60% 93.03% 63.94%
< 10−4 92.20% 90.27% 93.08% 91.02%
< 10−3 92.25% 98.36% 93.11% 98.62%
< 10−2 92.79% 98.57% 93.24% 98.73%
< 10−1 95.42% 98.99% 94.59% 99.22%

TABLE 7
The proportion of the elements in diffusion matrices W of the PR-3-p
and PR-3-s models which are larger than, or equal to, or smaller than

the corresponding ones in the PR-2-p and PR-2-s models respectively.

PR-2-p vs. PR-3-p PR-2-s vs. PR-3-s
Larger 4.21% 44.72%
Equal 89.95% 27.03%
Smaller 5.93% 28.25%

TABLE 8
The number of the mutual elements at different levels which exist in

both the adjacency matrix of the transportation network and the
diffusion matrices learned by the PR-2-s and PR-3-s models

respectively.

Level PR-2-s PR-3-s
> 0 227 168
> 10−5 178 138
> 10−4 38 53
> 10−3 23 19
> 10−2 21 18
> 10−1 16 12

[4] which is an accelerated gradient method. The algorithmic
procedures for the ISTA and FISTA methods are described in Al-
gorithms 2 and 3. The objective function that the ISTA and FISTA
algorithms minimize takes a form as F (Θ) = f(Θ) + g(Θ)
where Θ denotes a set of model parameters and f(Θ) and g(Θ)
are convex in terms of Θ. Both methods assume that the gradient
of f(Θ) has Lipschitz continuity and g(Θ) has a simple and
decomposable structure. The main idea of the ISTA and FISTA
methods is first to find a surrogate function Ql(Θ, Θ̂) as

Ql(Θ, Θ̂) =g(Θ) + f(Θ̂) + (Θ− Θ̂)T 5Θ f(Θ̂)

+
l

2
D(Θ, Θ̂)2,

where D(Θ, Θ̂)2 denotes the sum of squared Euclidean distances
between each corresponding part in Θ and Θ̂, and 5Θf(Θ̂)
denotes the derivative of f(Θ) with respect to Θ at Θ = Θ̂,
for F (Θ) based on the current solution Θ̂ and then to optimize
Ql(Θ, Θ̂) with respect to Θ with the minimizor denoted by
ql(Θ̂). According to [4], we have

F (Θk)− F (Θ?) ≤ ηL(f)‖Θ0 −Θ?‖2

2k
,

for the ISTA method, and

F (Θk)− F (Θ?) ≤ 2ηL(f)‖Θ0 −Θ?‖2

(k + 1)2
,

for the FISTA method. Here Θ? denotes the optimal solution
and L(f) denotes a Lipschitz constant of the gradient of f(·).
From the above results, we can see theoretically the order of the
convergence rate for the ADMM algorithm is the same as that of
the ISTA algorithm but inferior to that of the FISTA algorithm.

To apply the ISTA and FISTA methods to our models, for
all the proposed models we define f(Θ) as f(Θ) =

∑
i,j,k µ

i
jk

and use g(Θ) to denote the rest parts in the objective function.
Here g(Θ), a linear or quadratic function with respect to all
model parameters, has a simple and decomposable structure,
which satisfies the requirement for the function g(Θ). We find
that the ISTA and FISTA methods are also suitable for solving
the proposed objective functions with high-dimensional model
parameters and constraints on the model parameters since in each
step the subproblem has a close-form solution which requires only
simple operations such as the addition and substraction.

Algorithm 2 The ISTA Algorithm
1: Initialize l0, η > 1, and Θ0;
2: k := 1;
3: while not converged do
4: Find the smallest nonnegative integers ik such that
F (ql̂(Θk−1)) ≤ Ql̂(ql̂(Θk−1),Θk−1) where l̂ = ηik lk−1;

5: Set lk = ηik lk−1 and compute Θk = qlk(Θk−1);
6: k := k + 1;
7: end while

Algorithm 3 The FISTA Algorithm
1: Initialize l0, η > 1, and Θ0;
2: Λ1 := Θ0;
3: k := 1;
4: t1 := 1;
5: while not converged do
6: Find the smallest nonnegative integers ik such that with
l̂ = ηik lk−1, F (ql̂(Λk)) ≤ Ql̂(ql̂(Λk),Λk);

7: lk := ηik lk−1;
8: Θk := qlk(Λk);

9: tk+1 :=
1+
√

1+4t2k
2 ;

10: Λk+1 := Θk +
(
tk−1
tk+1

)
(Θk −Θk−1)

11: k := k + 1;
12: end while

We use all of the data for training to test the performance of the
ISTA, FISTA, and ADMM algorithms by solving the PR, PR-2-p,
PR-2-s, PR-3-p, and PR-3-s models. The results are recorded
in Figure 10. From the results, the FISTA algorithm converges
faster than the ISTA algorithm which matches the theoretical
analysis in [4]. Moreover, the ADMM algorithm has a much faster
convergence than that of the ISTA and FISTA algorithms. This
observation seems conflicting with the theoretical analysis. One
reason for this is that the Lipschitz constant L(f) in our model
is very large (i.e., 108) due to the exponential function defined on
the high-dimensional model parameters, making the convergence
of the ISTA and FISTA not as fast as shown by the theoretical
results.

5.7 Analysis on Running Time
In this section, we analyze the running time of the proposed
models. We use the Matlab R2011b as the testing environment
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Fig. 10. Comparison on the convergence of the ISTA, FISTA and ADMM algorithms in terms of the objective function values for different models.

and run the different models on a ThinkPad notebook with Intel
i7 CPU and 8GB RAM. By using all the data as the training
data, the average running time over 100 repetitions for different
models is shown in Table 9. From the results, we can see that
by incorporating more factors, the running time becomes slightly
longer, which matches our intuition since more model parameters
are needed to learn. The running time of our proposed models
is very short (less than 3 seconds for all the cases we tested),
implying that the learning process is very efficient. Moreover,
the SSGPOR model requires a much longer running time since
it needs to do a costly matrix inverse in each iteration.

TABLE 9
The running time of different methods.

Method Running Time (Second)
PR 0.3760
SSGPOR 20.5120
PR-2-p 1.6230
PR-2-s 1.4157
PR-3-p 2.2334
PR-3-s 2.2760

6 CONCLUSIONS

In this paper, we investigate how to combine three types of factors,
the intra-regional, inter-regional and external factors, for epidemic
prediction in a unified framework based on Poisson regression.
The intra-regional factor is modeled by a linear function of region-
specific features, the inter-regional one is modeled by a diffusion
matrix learned from the data, and the effect of the external factor
can be approximated by a parametric function (e.g., a quadratic
function) of the time information.

Usually the epidemic diffusion pattern changes over years,
making the model for epidemic prediction differ in different

years. One extension of our work is to learn year-specific models
for epidemic prediction. Moreover, the Poisson regression model
has the overdispersion problem in which the expected prediction
equals its variance. This problem seems more restrictive for some
applications and we are interested in employing some extension of
the Poisson regression model such as the negative-binomial regres-
sion model [13] for epidemic prediction based on the combination
of those three factors.
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